

Prise en compte de l'information spatiale et temporelle pour l'analyse de séquences d'images

Mohamed CHELALI

26 novembre 2021

Financement

Projet ANR : TIMES

- Objectif : analyse des changements environnementaux
- Motivation :
 - Exploitation de masses de données (visuelles) hétérogènes à haute fréquence temporelle

M. Chelali — Prise en compte de l'information spatiale et temporelle pour l'analyse de séquences d'images

- 1. Introduction
- 2. Méthodes de l'état de l'art
- 3. Étude de la stabilité
- 4. Étude des variations des séquences temporelles d'images
- 5. Conclusion et perspectives

Contexte

• Évolution de la technologie

- Évolution de la technologie
- Augmentation de la quantité d'images et de vidéos ou de séquences temporelles d'images (STI)

- Évolution de la technologie
- Augmentation de la quantité d'images et de vidéos ou de séquences temporelles d'images (STI)

- Évolution de la technologie
- Augmentation de la quantité d'images et de vidéos ou de séquences temporelles d'images (STI)

Contexte

• Données initiales des séquences temporelles d'images (STI) : 2D + t

Contexte

• Données initiales des séquences temporelles d'images (STI) : 2D + t

• Étudier l'information du domaine spatial au cours du temps

- Données initiales des séquences temporelles d'images (STI) : 2D + t
- Étudier l'information du domaine spatial au cours du temps
- Deux types de STI :
 - Séquence d'images avec une continuité visuelle
 - ٠

- Données initiales des séquences temporelles d'images (STI) : 2D + t
- Étudier l'information du domaine spatial au cours du temps
- Deux types de STI :
 - Séquence d'images avec une continuité visuelle
 - Séquence avec des images ponctuelles

Problématiques

Séquence d'images avec une continuité visuelle

- La caméra peut être fixe ou en mouvement
- Vitesse de déplacement (caméra ou objet dans la scène)

(a) Caméra fixe

(b) Caméra en mouvement

Problématiques

Séquence d'images avec un contenu non-déformable

- La caméra est toujours fixe sur la même scène
- Étude de l'évolution temporelle

(a) Caméra fixe

Méthodes de l'état de l'art pour l'analyse des séquences temporelles d'images

Types des caractéristiques

• Caractéristiques expertes (artisanales ou hand-crafted)

Types des caractéristiques

• Caractéristiques expertes (artisanales ou hand-crafted)

• Architecture expertes avec des caractéristiques apprises (CNN, RNN)

Types des caractéristiques

• Caractéristiques expertes (artisanales ou hand-crafted)

• Architecture expertes avec des caractéristiques apprises (CNN, RNN)

Nature des caractéristiques

Nature des caractéristiques

Caractéristiques artisanales

- Exemple de caractéristiques (e.g. HOG¹, SIFT²)
- Représentation de chaque vidéo par un Sac-de-Mots (noté BoW)
- Classification de chaque vidéo grâce au BoW (SVM ou Forêt Aléatoire)

 Shih-Shinh HUANG et al. (2011). "Combining Histograms of Oriented Gradients with Global Feature for Human Detection". In : Advances in Multimedia Modeling, Part II. T. 6524. Lecture Notes in Computer Science. Springer, p. 208-218.

2. David G. LOWE (1999). "Object Recognition from Local Scale-Invariant Features". In : International Conference on Computer Vision. IEEE Computer Society, p. 1150-1157.

Méthodes d'analyse des STI

Caractéristiques apprises

- Analyse des pixels temporels
 - LSTM, TempCNN¹
- Méthodes hybrides
 - CNN 2D + CNN 1D 2
- Analyse de séquences temporelles d'images
 - CNN 3D³
 - Nuage de points

(c) Hybride UNet²

- 1. Charlotte PELLETIER, Geoffrey I. WEBB et François PETITJEAN (2019). "Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series". In : *Remote Sensing* 11.5, p. 523.
- 2. Andrei STOIAN et al. (2019). "Land Cover Maps Production with High Resolution Satellite Image Time Series and Convolutional Neural Networks: Adaptations and Limits for Operational Systems". In : *Remote Sensing* 11.17, p. 1986.
- 3. Nicolas AUDEBERT, Bertrand Le SAUX et Sébastien LEFÈVRE (2019). "Deep Learning for Classification of Hyperspectral Data: A Comparative Review". In : *CoRR* abs/1904.10674.

Objectifs des travaux

Classification des séquences temporelles d'images (STI)

 $\Rightarrow\,$ Compréhension de la dynamique de la scène observée

Challenges et motivations

 \Rightarrow Étudier conjointement les domaines spatial et temporel

Objectifs des travaux

Classification des séquences temporelles d'images (STI)

 $\Rightarrow\,$ Compréhension de la dynamique de la scène observée

Challenges et motivations

 $\Rightarrow\,$ Étudier conjointement les domaines spatial et temporel

Extraction de caractéristiques spatio-temporelles pour la classification des STI

Étude de la stabilité

Motivations

Rôle de la stabilité

• Étude des zones qui ne subissent pas de changement dans le temps

Motivations

Rôle de la stabilité

• Étude des zones qui ne subissent pas de changement dans le temps

Au lieu de chercher des changements \rightarrow nous étudions la stabilité

Vers une nouvelle représentation intermédiaire d'un pixel temporel

- Étudier la répétition des valeurs successives dans le temps
- Quelle stratégie de transformation ?
 - Run Length Encoding (RLE)⁴

Note : Le RLE est appliqué sur chaque pixel temporel

^{4.} Solomon W. GOLOMB (1966). "Run-length encodings (Corresp.)". In : IEEE Trans. Inf. Theory 12.3, p. 399-401.

• Stabilité maximale (notée *MS*)

$$MS(p) = \|RLE(p)\|_{\infty} = \mathbf{6}$$

• Stabilité maximale (notée *MS*)

$$MS(p) = \|RLE(p)\|_{\infty} = \mathbf{6}$$

• Début de la stabilité maximale (notée MSS)

• Stabilité maximale (notée MS)

$$MS(p) = \|RLE(p)\|_{\infty} = \mathbf{6}$$

• Début de la stabilité maximale (notée MSS)

$$MSS(p) = \left(\sum_{i=1}^{t_0-1} RLE(p)_i\right) = 7$$

avec
$$t_0 / RLE(p)_{t_0} = MS(p)$$

• Nombre de changements (notée NB)

$$NB(p) = l_p - 1 = \mathbf{3}$$

La notion d'égalité est la clé pour la mesure de stabilité

- L'égalité des valeurs n'est pas toujours significative
 - Variabilité des valeurs dans la séquence temporelle d'images (noté (I_t)_{t∈[[1, T]]})
 - Complexité lors de la comparaison vectorielle (e.g. images RGB)

Définition de la notion d'égalité

- Quantification des valeurs de la $(I_t)_{t\in [\![1,\,T]\!]}$ en appliquant un $k\text{-Moyenne}\;(k$ est un paramètre)
- Nous définissons le prédicat P par l'égalité entre deux objets comme :

$$P(o_1, o_2) = (o_1' = o_2')$$

M. Chelali — Prise en compte de l'information spatiale et temporelle pour l'analyse de séquences d'images

Perturbations dans les données

- Outliers
- Bruits (e.g. nuages non détectés, artéfacts d'acquisition)
- Alignement des images discrètes

Exemple

Perturbations dans les données

- Outliers
- Bruits (e.g. nuages non détectés, artéfacts d'acquisition)
- Alignement des images discrètes

Exemple

Relaxation de l'égalité dans le domaine temporel

p(x, y)	2	5	2	5	2	5	5		p(x, y)	2	5	2	5	2	5	5
$\widetilde{RLE}(p)$		5				2			$\widetilde{RLE}(p)$	1			6	ĵ		

Perturbations dans les données

- Outliers
- Bruits (e.g. nuages non détectés, artéfacts d'acquisition)
- Alignement des images discrètes

Exemple

Relaxation de l'égalité dans le domaine temporel

p(x, y)	2	5	2	5	2	5	5	p(x, y)	2	5	2	5	2	5	5
$\widetilde{RLE}(p)$			5			2	2	$\widetilde{RLE}(p)$	1			6	ô		

Limitée au domaine temporel seulement

Relaxation de l'égalité dans le domaine spatial

Université de Paris

Relaxation de l'égalité dans le domaine spatial

Relaxation de l'égalité dans le domaine spatio-temporel

Composition des caractéristiques extraites en une image en fausses couleurs

- Stabilité Max
- Nb changements
- Début de la Stabilité Max

Vidéo originale

Composition des caractéristiques extraites en une image en fausses couleurs

- Stabilité Max
- Nb changements
- Début de la Stabilité Max

Vidéo originale

Composition des caractéristiques extr couleurs

- Stabilité Max
- Nb changements
- Début de la Stabilité Max

Vidéo originale

Composition des caractéristiques extr couleurs

- Stabilité Max
- Nb changements
- Début de la Stabilité Max

Composition des caractéristiques extr couleurs

- Stabilité Max
- Nb changements
- Début de la Stabilité Max

Application et évaluation sur deux cadres applicatifs :

- Application de télédétection Analyse de la tache urbaine
- Application de vidéo

Reconnaissance de scènes de violence

Données pour l'analyse de la couverture urbaine

- Série Temporelle d'Images Satellitaires issue de Sentinel-2 de 2017
 - 50 images de taille 1000×1000
 - Chaque pixel est caractérisé par l'indice de végétation : $NDVI = \frac{Nir R}{Nir + R}$
- Interpolation linéaire sur les zones masquées par des nuages
- Deux villes sont sélectionnées : Strasbourg et Mulhouse

Données pour l'analyse de la couverture urbaine

- Données de référence
 - Produit d'imperméabilité des matériaux : représente le pourcentage d'imperméabilisation du sol
 - Classes : zones artificielles (> 0% imperméabilité) zones naturelles (0% imperméabilité)

M. Chelali — Prise en compte de l'information spatiale et temporelle pour l'analyse de séquences d'images

Classification des STIS

Caractéristiques :

- Pixel temporel *p^{NDVI}* (50 carac.)
- Moyenne du pixel temporel $\overline{p^{NDVI}}$ (1 carac.)
- TS, TS_{temp}, TS_{spatio} et TS_{spatio-temp} (3 carac.)

Classificateurs :

- Arbre de décision : nb carac. \leqslant 3
- Forêt aléatoire : nb carac. > 3
- TempCNN 5 : nb carac. > 3

Charlotte PELLETIER, Geoffrey I. WEBB et François PETITJEAN (2019). "Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series". In : Remote Sensing 11.5, p. 523.

Analyse de la tache urbaine

Classification des STIS

Caractéristiques :

- Pixel temporel *p^{NDVI}* (50 carac.)
- Moyenne du pixel temporel $\overline{p^{NDVI}}$ (1 carac.)
- *TS*, *TS*_{temp}, *TS*_{spatio} et *TS*_{spatio-temp} (3 carac.) Expérience :
 - Entraînement sur Mulhouse et test sur Strasbourg

Classificateurs :

- Arbre de décision : nb carac. \leqslant 3
- Forêt aléatoire : nb carac. > 3
- TempCNN 5 : nb carac. > 3

 Charlotte PELLETIER, Geoffrey I. WEBB et François PETITJEAN (2019). "Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series". In : Remote Sensing 11.5, p. 523.

Analyse de la tache urbaine

Classification des STIS

Caractéristiques :

- Pixel temporel *p*^{NDVI} (50 carac.)
- Moyenne du pixel temporel $\overline{p^{NDVI}}$ (1 carac.)
- TS, TS_{temp}, TS_{spatio} et TS_{spatio-temp} (3 carac.)

Expérience :

• Entraînement sur Mulhouse et test sur Strasbourg

Classificateurs :

- Arbre de décision : nb carac. \leqslant 3
- Forêt aléatoire : nb carac. > 3
- TempCNN 5 : nb carac. > 3

Analyse de la tache urbaine

Classification des STIS

Caractéristiques :

- Pixel temporel *p*^{NDVI} (50 carac.)
- Moyenne du pixel temporel $\overline{p^{NDVI}}$ (1 carac.)
- TS, TS_{temp}, TS_{spatio} et TS_{spatio-temp} (3 carac.)

Expérience :

• Entraînement sur Mulhouse et test sur Strasbourg

Classificateurs :

- Arbre de décision : nb carac. \leqslant 3
- Forêt aléatoire : nb carac. > 3
- TempCNN 5 : nb carac. > 3

Application et évaluation sur deux cadres applicatifs :

- Application de télédétection Analyse de la tache urbaine
- Application de vidéo

Reconnaissance de scènes de violence

Reconnaissance de scènes de violence

Données et vérité terrain pour la reconnaissance de scènes de violence

(a) RWF2000

(b) Movies Fights

(c) Hockey Fights

(d) Crowd Violence

- Quatre jeux de données sont utilisés
- Nombre de vidéos par classe équilibré dans tous les datasets

Dataset	RWF2000 ¹	Movies fights ²	Hockey fights ²	Crowd Violence ³
Nb de vidéos	2000	200	1000	246
	Pro	oriétés		
Durée (second)	150	42-60	40-49	26-163
Largeur (pixel)	204-1920	720	360	320
Hauteur (pixel)	188 - 1080	480-576	288	240

1. M. Cheng, and al Rwf-2000 : An open large scale video database for violence detection, in ICPR, 2020, pp. 4183-4190.

2. E. B. Nievas, and al., Violence detection in video using computer vision techniques, in CAIP.

3. Y. I. T. Hassner and O. Kliper-Gross, Violent flows : Real-time detection of violent crowd behavior, in CVPR workshops, 2012, pp. 1-6.

Reconnaissance de scènes de violence

Visualisation du résumé 2D

- Utilisation de vidéos en niveaux de gris
- Quantification des valeurs avec k-Moyenne : k = 4
- \Rightarrow Composition des résumés TS_*
 - Stabilité Max
 - Nb changements
 - Début de la Stab. Max

Vidéo violente

• Modèle : SQUEEZENET (IANDOLA et al., 2016)

k _{quanti}	Caractéristique	RWF2000	Movies fights	Hockey fights	Crowd Violence
	TS	82.5	97.5	88.6	80.0
4	TS _{temp}	82.7	97.5	89.9	83.3
	TS _{spatio}	81.5	97.5	88.2	80.8
	$TS_{spatio-temp}$	81.7	97.5	91.1	84.5

• Modèle : SQUEEZENET (IANDOLA et al., 2016)

k _{quanti}	Caractéristique	RWF2000	Movies fights	Hockey fights	Crowd Violence
	TS	82.5	97.5	88.6	80.0
4	TS _{temp}	82.7	97.5	89.9	83.3
	TS _{spatio}	81.5	97.5	88.2	80.8
	$TS_{spatio-temp}$	81.7	97.5	91.1	84.5

• Modèle : SQUEEZENET (IANDOLA et al., 2016)

k _{quanti}	Caractéristique	RWF2000	Movies fights	Hockey fights	Crowd Violence
	TS	82.5	97.5	88.6	80.0
4	TS _{temp}	82.7	97.5	89.9	83.3
	TS _{spatio}	81.5	97.5	88.2	80.8
	$TS_{spatio-temp}$	81.7	97.5	91.1	84.5

Méthode	RWF2000	Movies fights	Hockey fights	Crowd Violence		
CNN 3D						
Temp. Seg. Nets (WANG et al., 2016)	81.5	94.2	91.5	81.5		
I3D (CARREIRA et ZISSERMAN, 2017)	83.4	95.8	93.4	83.4		
Represent. flow (WANG et al., 2017)	85.3	97.3	92.5	85.9		
Flow Gated Net (CHENG, CAI et LI, 2020)	87.3	n/a	98.0	88.8		
ECO (ZOLFAGHARI, SINGH et BROX, 2018)	83.7	96.3	94.0	84.7		
Nuage de	points					
PointNet++ (QI et al., 2017)	78.2	89.2	89.7	89.2		
PointConv (WU, QI et LI, 2019)	76.8	91.3	89.7	89.2		
DGCNN (WANG et al., 2019)	80.6	92.6	90.2	87.4		
SPIL (Su et al., 2020)	89.3	98.5	96.8	94.5		

• Modèle : SQUEEZENET (IANDOLA et al., 2016)

k _{quanti}	Caractéristique	RWF2000	Movies fights	Hockey fights	Crowd Violence
	TS	82.5	97.5	88.6	80.0
4	TS _{temp}	82.7	97.5	89.9	83.3
	TS _{spatio}	81.5	97.5	88.2	80.8
	$TS_{spatio-temp}$	81.7	97.5	91.1	84.5

Accuracy

 $TS_{spatio} = \frac{3.3750}{2.8750}$

Méthode	RWF2000		Hockey fights	Crowd Violence		
CNN 3D						
Temp. Seg. Nets (WANG et al., 2016)	81.5	94.2	91.5	81.5		
I3D (CARREIRA et ZISSERMAN, 2017)	83.4	95.8	93.4	83.4		
Represent. flow (WANG et al., 2017)	85.3	97.3	92.5	85.9		
Flow Gated Net (CHENG, CAI et LI, 2020)	87.3	n/a	98.0	88.8		
ECO (ZOLFAGHARI, SINGH et BROX, 2018)	83.7	96.3	94.0	84.7		
Nuage de	points					
PointNet++ (QI et al., 2017)	78.2	89.2	89.7	89.2		
PointConv (WU, QI et LI, 2019)	76.8	91.3	89.7	89.2		
DGCNN (WANG et al., 2019)	80.6	92.6	90.2	87.4		
SPIL (SU et al., 2020)	89.3	98.5	96.8	94.5		

1.8750 TS_{spatio} – temp

• Modèle : SQUEEZENET (IANDOLA et al., 2016)

k _{quanti}	Caractéristique	RWF2000	Movies fights	Hockey fights	Crowd Violence
	TS	82.5	97.5	88.6	80.0
4	TS _{temp}	82.7	97.5	89.9	83.3
	TS _{spatio}	81.5	97.5	88.2	80.8
	$TS_{spatio-temp}$	81.7	97.5	91.1	84.5

Accuracy

 $TS_{spatio} = \frac{3.3750}{2.8750}$

Méthode	RWF2000	Movies fights	Hockey fights	Crowd Violence		
CNN 3D						
Temp. Seg. Nets (WANG et al., 2016)	81.5	94.2	91.5	81.5		
I3D (CARREIRA et ZISSERMAN, 2017)	83.4	95.8	93.4	83.4		
Represent. flow (WANG et al., 2017)	85.3	97.3	92.5	85.9		
Flow Gated Net (CHENG, CAI et LI, 2020)	87.3	n/a	98.0	88.8		
ECO (ZOLFAGHARI, SINGH et BROX, 2018)	83.7	96.3	94.0	84.7		
Nuage de	points					
PointNet++ (QI et al., 2017)	78.2	89.2	89.7	89.2		
PointConv (WU, QI et LI, 2019)	76.8	91.3	89.7	89.2		
DGCNN (WANG et al., 2019)	80.6	92.6	90.2	87.4		
SPIL (SU et al., 2020)	89.3	98.5	96.8	94.5		

1.8750 TS_{spatio} – temp

Ce qu'il faut retenir

- Extraction de caractéristiques artisanales qui mesurent la stabilité temporelle
- Relaxation de l'égalité pour rendre ces caractéristiques spatio-temporelles
- Utilisation :
 - Résumer une séquence temporelle d'images
 - Classifier les données

Avantages et limites

- Facilité d'analyse des territoires urbains avec les données satellitaires
- Présente des limites en analyse de vidéos
 - Déplacement des objets ou de la caméra

Code source : https://github.com/mchelali/TemporalStability

Étude des variations des séquences temporelles d'images

Pourquoi les variations?

Information spatiale très limitée

Utilisation des réseaux de neurones convolutionnels

$\mathrm{DEEP}\text{-}\mathrm{STAR}$: composée de deux étapes

• Hors-ligne

• En-ligne

$\mathrm{DEEP}\text{-}\mathrm{STAR}$: composée de deux étapes

• Hors-ligne

• En-ligne

$\begin{array}{l} {\rm DEEP}{\rm -STAR} \ : \ \mbox{du 3D au STR} \\ {\rm Stratégie} \ : \end{array}$

• Observer la STI d'un point de vue intermédiaire

- Observer la STI d'un point de vue intermédiaire
- Représenter une STI par plusieurs représentations spatio-temporelles (STR)

 \Rightarrow Permet de traiter des images 2D (au lieu du cube 3D)

- Réduire la complexité de la structure des données : 2D+t à 2D
- Transformation de chaque image en un vecteur 1D

- Réduire la complexité de la structure des données : 2D+t à 2D
- Transformation de chaque image en un vecteur 1D

Problème : Perte partielle de l'information spatiale

 $\Rightarrow\,$ Courbes globales ou courbes remplissant l'espace

- Réduire la complexité de la structure des données : 2D+t à 2D
- Transformation de chaque image en un vecteur 1D

- \Rightarrow Courbes globales ou courbes remplissant l'espace
- \Rightarrow Courbes locales : Random Walk (RW)

- Réduire la complexité de la structure des données : 2D+t à 2D
- Transformation de chaque image en un vecteur 1D

- \Rightarrow Courbes globales ou courbes remplissant l'espace
- \Rightarrow Courbes locales : Random Walk (RW)

- Réduire la complexité de la structure des données : 2D+t à 2D
- Transformation de chaque image en un vecteur 1D

- \Rightarrow Courbes globales ou courbes remplissant l'espace
- \Rightarrow Courbes locales : Random Walk (RW)

- Réduire la complexité de la structure des données : 2D+t à 2D
- Transformation de chaque image en un vecteur 1D

Problème : Perte partielle de l'information spatiale

- \Rightarrow Courbes globales ou courbes remplissant l'espace
- \Rightarrow Courbes locales : Random Walk (RW)

Apprendre à étiqueter les STR

(b) \Re_{snake}

(c) \Re_{spiral}

(d) ℜ_{Hilbert}

Influence de la représentation des données

(a) Image de Google Earth (1665 \times 2056 pixels)

(b) Image Sentinel-2 prise le 06-18-2017 (62 × 78 pixels)

(c) STR associée au segment jaune dans (b)

(d) Taille réelle de l'image Sentinel-2

$\mathrm{DEEP}\text{-}\mathrm{STAR}$: composée de deux étapes

• Hors-ligne

• En-ligne

Étape d'inférence

- Génération de Nseg STR pour chaque STI
- Décision locale : classification de chaque STR
- Décision globale : agrégation des probabilités de toutes les STR

Application et évaluation sur deux cadres applicatifs :

- Application de télédétection Analyse de parcelles agricoles
- Application de vidéo

Reconnaissance de scènes de violence

Analyse de parcelles agricoles

Données pour l'analyse des parcelles agricoles

- Série Temporelle d'Images Satellitaires issue de Sentinel-2 de 2017
- Parcelles extraites du RPG⁶
- Correction des délimitations par photo-interprétation
- Nombre de parcelles

Classes	# nolv	aire (en pixels)		
encoco	# polji	moyenne	écart-type	
Prairies	1 045	250	338	
Vignes	562	50	47	
Vergers traditionnels	136	154	305	
Vergers intensifs	191	129	115	
Total	1 934	-	-	

6. http://professionnels.ign.fr/rpg

M. Chelali — Prise en compte de l'information spatiale et temporelle pour l'analyse de séquences d'images

Analyse de parcelles agricoles

Données pour l'analyse des parcelles agricoles

- Série Temporelle d'Images Satellitaires issue de Sentinel-2 de 2017
- Parcelles extraites du RPG⁶
- Correction des délimitations par photo-interprétation
- Nombre de parcelles

Classes	# poly.	Méthode globale : G-STR	Méthode locale : MS-STR		TR	
		R*	$RW_{10\%}$	RW _{20%}	RW _{50%}	
Prairies	1 045	1 757	26 110	51 688	128 424	179 914
Vignes	562	577	3 060	5 821	14 137	19 853
Vergers traditionnels	136	189	2 146	4 222	10 474	14 672
Vergers intensifs	191	226	2 564	5 027	12 414	17 408
Total	1 934	2 749	33 880	66 758	165 449	231 847

6. http://professionnels.ign.fr/rpg

M. Chelali — Prise en compte de l'information spatiale et temporelle pour l'analyse de séquences d'images

- STR crées avec la méthode globale (notée *G STR*)
- Modèle : SQUEEZENET (IANDOLA et al., 2016)

- STR crées avec la méthode globale (notée G STR)
- Modèle : SQUEEZENET (IANDOLA et al., 2016)

TC : taux de bonne classification ET : écart-type

	ir	initialisation aléatoire			Fine tuning	
Représentation		тс	ET		тс	ET
R _{snake}	_ 7	0.00	1.70		79.94	2.06
ℜ _{spiral}	^۲ و	8.92	2.50		77.23	1.42
R _{Hilbert}	⁸ 6	9.23	2.82		81.69	1.88

- STR crées avec la méthode globale (notée G STR)
- Modèle : SQUEEZENET (IANDOLA et al., 2016)

TC : taux de bonne classification

ET : écart-type

		initialisa	tion aléatoire	Fine to	uning
Représentation		тс	ET	тс	ET
R _{snake}	٥	70.00	1.70	79.94	2.06
R _{spiral}	A sr	68.92	2.50	77.23	1.42
ℜ _{Hilbert}	sal	69.23	2.82	81.69	1.88
R _{snake}	0	81.12	2.37	91.43	1.58
ℜ _{spiral}	sc A	76.05	2.53	89.43	1.61
ℜ _{Hilbert}	av	80.51	2.28	91.69	0.91

- STR crées avec la méthode locale (notée MS STR)
- Modèle : SQUEEZENET (IANDOLA et al., 2016)

TC : taux de bonne classification ET : écart-type

	N _{seg}	Initialisation aléatoire		Fine tuning	
Représentation	Entraîn. / Test	тс	ET	тс	ET
	10%	80.30	1.63	90.51	0.48
DI4/(10)	20%	84.61	1.58	91.48	0.75
<i>RVV</i> (10)	50%	87.23	2.61	92.56	0.95
	70%	89.28	0.96	93.07	1.02

- STR crées avec la méthode locale (notée MS STR)
- Modèle : SQUEEZENET (IANDOLA et al., 2016)

TC : taux de bonne classification

ET : écart-type

	N _{seg}	Initialisation aléatoire		Fine tuning	
Représentation	Entraîn. / Test	тс	ET	тс	ET
	10%	80.30	1.63	90.51	0.48
<i>RW</i> (10)	20%	84.61	1.58	91.48	0.75
	50%	87.23	2.61	92.56	0.95
	70%	89.28	0.96	93.07	1.02
		81.64	3.31	91.07	2.53
<i>RW</i> (50)	20%	84.82	1.32	93.80	1.57
	50%	89.33	0.92	94.06	1.44
	70%	90.71	1.05	94.80	1.57

- STR crées avec la méthode locale (notée MS STR)
- Modèle : SQUEEZENET (IANDOLA et al., 2016)

ΤС	:	taux de bonne classification
ΕT	:	écart-type

	N _{seg}	Initialisation aléatoire		Fine t	uning
Représentation	Entraîn. / Test	тс	ET	тс	ET
	10%	80.30	1.63	90.51	0.48
DW/(10)	20%	84.61	1.58	91.48	0.75
RVV(10)	50%	87.23	2.61	92.56	0.95
	70%	89.28	0.96	93.07	1.02
	10%	81.64	3.31	91.07	2.53
	20%	84.82	1.32	93.80	1.57
<i>RVV</i> (50)	50%	89.33	0.92	94.06	1.44
	70%	90.71	1.05	94.80	1.57
	10%	83.89	0.80	92.50	1.05
<i>RW</i> (100)	20%	88.71	1.27	93.20	0.65
	50%	89.12	1.86	94.21	1.19
	70%	89.53	2.10	94.64	0.80

• Comparaison avec les méthodes de l'état-de-l'art (EA)

TC : taux de bonne classification

ET : écart-type

Scores EA VS. nos meilleurs scores

Méthodes	тс	ET
MS-STR RW(50) _{70%}	94.80	1.57
TempCNN (PELLETIER, WEBB et PETITJEAN, 2019)	92.98	0.89
G-STR R _{Hilbert}	91.69	0.91
baML (MAURO et al., 2017)	91.25	0.53
3D-SQUEEZENET (KÖPÜKLÜ et al., 2019)	85.33	1.19
LSTM (IENCO et al., 2017)	83.48	2.29
ConvLSTM (RUSSWURM et KÖRNER, 2018)	74.66	1.56

Application et évaluation sur deux cadres applicatifs :

- Application de télédétection
 Analyse de parcelles agricoles
- Application de vidéo
 Reconnaissance de scènes de violence

Stratégie d'étiquetage des STR

• Les STR violentes sont générées dans les zones à grand flux optique

- STR dans le domaine violent des vidéos violentes
- STR dans tous le domaine de l'image dans les vidéos non violentes + STR en-dehors du domaine violent dans les vidéos violentes

	RWF2000	Movies fights	Hockey fights	Crowd Violence
Vidéo violente	30 000	3 000	15 000	3840
Vidéo non violente	30 000	3 000	15 000	3840
Total	60 000	6 000	30 000	7680

Université de Paris

Classification des vidéos pour la reconnaissance des scènes de violence

- Modèle : SQUEEZENET (IANDOLA et al., 2016)
- Méthode utilisée : MS-STR RW(100)

Classification des vidéos pour la reconnaissance des scènes de violence

- Modèle : SQUEEZENET (IANDOLA et al., 2016)
- Méthode utilisée : MS-STR RW(100)

Méthode	RWF2000	Movies fights	Hockey fights	Crowd Violence
Deep-S	TaR			
$N_{seg}^{test} = 100$	93.8	98.5	94.4	89.8
CNN 3	3D			
Temp. Seg. Nets (WANG et al., 2016)	81.5	94.2	91.5	81.5
I3D (CARREIRA et ZISSERMAN, 2017)	83.4	95.8	93.4	83.4
Represent. flow (WANG et al., 2017)	85.3	97.3	92.5	85.9
Flow Gated Net (CHENG, CAI et LI, 2020)	87.3	n/a	98.0	88.8
ECO (ZOLFAGHARI, SINGH et BROX, 2018)	83.7	96.3	94.0	84.7
Nuage de	points			
PointNet++ (QI et al., 2017)	78.2	89.2	89.7	89.2
PointConv (WU, QI et LI, 2019)	76.8	91.3	89.7	89.2
DGCNN (WANG et al., 2019)	80.6	92.6	90.2	87.4
SPIL (Su et al., 2020)	89.3	98.5	96.8	94.5

Classification des vidéos pour la reconnaissance des scènes de violence

- Modèle : SQUEEZENET (IANDOLA et al., 2016)
- Méthode utilisée : MS-STR RW(100)

Réalisation d'une carte de probabilités pour localiser la violence

- Diviser le domaine spatial de la vidéo selon une grille
- Générer une STR par cellule de la grille
- Indiquer la probabilité de violence de chaque STR dans chaque cellule

(a)

(b)

Résultat de la classification d'une vidéo issue de la base Crowd Violence : (a) Une image de la vidéo; (b) Carte des probabilités de violence (échelle de couleur : rouge (forte violence), bleu (pas de violence)). Étude des variations des séquences temporelles d'images

Explicabilité des décisions du CNN

Interprétation visuelle

- Explication de la décision prise par le CNN
- 2 stratégies co-existent : trainable attention vs. post-hoc attention
- Visualisation des régions qui caractérisent chaque classe
- Solution : utilisation du Grad-CAM++ (CHATTOPADHYAY et al., 2018) qui est une amélioration des *Class Activation Map*

Grad-CAM for "Cat"

Grad-CAM for "Dog"

Interprétation visuelle

- Explication de la décision prise par le CNN
- 2 stratégies co-existent : trainable attention vs. post-hoc attention
- Visualisation des régions qui caractérisent chaque classe
- Solution : utilisation du Grad-CAM++ (CHATTOPADHYAY et al., 2018) qui est une amélioration des *Class Activation Map*

- Attention temporelle : choisir une plage temporelle significative
- Attention spatiale : explicabilité de la décision dans l'espace spatial original

Attention temporelle

Objectif

• Identification du domaine temporel le plus discriminant de chaque classe

Questions

- Est-il essentiel d'analyser tout le domaine temporel ?
- Peut-on améliorer les scores en n'utilisant qu'une partie du domaine temporel ?

Éxplicabilité des décisions du CNN

Attention temporelle

- Capturer l'attention temporelle X
- Binariser le profil de l'attention temporelle, noté BinX
- Définir un masque pour capturer le domaine temporel le plus significatif

Attention temporelle avec $\mathrm{DEEP}\text{-}\mathrm{STAR}$

• DEEP-STAR : nouvelle plage temporelle [0; 120]

	224 dates		Nouvelle plage temporell		
	тс	ET	тс	ET	
RW(100)	93.00	2.44	94.00	2.54	

Attention spatiale

Objectif

• Explication de la décision en mettant en évidence les décisions spatiales intéressantes dans l'espace image original 2D de la STI

Questions

• Comment revenir vers l'espace original en considérant les N_{seg} représentations ?

(a) S^{c(STR)} de Prairie

Attention spatiale

- Capturer l'attention spatiale d'un pixel p
- Attribuer l'attention maximale du pixel p entre toutes les STR à la position spatiale
- Créer une carte de segmentation sémantique en affectant une couleur à chacune des attentions maximales des C classes

Attention spatiale

Étude des variations des séquences temporelles d'images

- En fonction des informations portées par les STR
 - $\Rightarrow\,$ Quelles sont les informations les plus utilisées par le CNN ?
- Proposition : alimenter le CNN avec des images synthétiques

Éxplicabilité des décisions du CNN

- En fonction des informations portées par les STR
 - $\Rightarrow\,$ Quelles sont les informations les plus utilisées par le CNN ?
- Proposition : alimenter le CNN avec des images synthétiques

- Calculer l'énergie (E) des k réponses de la couche considérée
- Calculer le ratio des k énergies

$$R_{st}(k) = \frac{E_k(F_s)}{E_k(F_t)}$$

Analyse des filtres du CNN

Interprétation des ratios R_{st}

- Les filtres spatiaux : le rapport $R_{st}(k)$ est supérieur à $1 + \mu$
- Les filtres temporels : le rapport $R_{st}(k)$ est inférieur à 1ν
- $\circ\,$ Les filtres spatio-temporels sont ceux dont le rapport $R_{\rm st}(k)$ est compris entre $1-\nu\,$ et $1+\mu\,$

Analyse des filtres de SQUEEZNET entraîné sur les STR de parcelles

• Meilleur modèle : MS-STR - RW(50)70%
Éxplicabilité des décisions du CNN

Analyse des filtres de SQUEEZNET entraîné sur les STR de parcelles

- Meilleur modèle : MS-STR RW(50)70%
- Visualisation des k ratios des énergies

Éxplicabilité des décisions du CNN

Analyse des filtres de SQUEEZNET entraîné sur les STR de parcelles

- Meilleur modèle : MS-STR RW(50)70%
- Visualisation des k ratios des énergies
- Classification des filtres, $\mu = \nu = 0.15$

Éxplicabilité des décisions du CNN

Analyse des filtres de SQUEEZNET entraîné sur les STR de p

- Application sur le meilleur modèle : MS-STR RW(50)70%
- Classification des filtres, $\mu = \nu = 0.15$
- Analyse des filtres pour quelques parcelles

(e) Prairie

(c) Verger intensif

10

(d) Verger traditionnel

f = 8

(f) Vigne

Ce qu'il faut retenir

- Proposition d'une représentation spatio-temporelle
 - Utilisation d'un réseau de neurones convolutif 2D pour apprendre des caractéristiques spatio-temporelles
 - Utilisation d'un modèle pré-entraîné (e.g. la base IMAGENET)
- Proposition d'un mécanisme d'attention post-hoc
 - Pour analyser le domaine temporel
 - Pour générer une carte de segmentation sémantique
- Analyse de la nature de l'information portée par les filtres

Conclusion et perspectives

Conclusion

- Proposition de 2 méthodes pour la définition de caractéristiques
 - Caractéristique artisanale qui mesure la stabilité temporelle
 - Caractéristiques apprises automatiquement grâce à un réseau de neurones convolutif 2D
- Utilisation de chacune des méthodes dans 2 cadres applicatifs
 - Analyse de la couverture urbaine
 - Analyse de parcelles agricoles
 - Analyse des vidéos pour la reconnaissance des scènes de violences

Perspectives

Mesure de la stabilité

- Étudier l'égalité vectorielle (e.g. RGB)
- Étudier la quantification des valeurs
- Étudier les différentes relaxations
- Utiliser les méthodes d'apprentissage pour :
 - Générer l'image du résumé
 - Classifier la séquence avec un modèle à 2 têtes (une pour le résumé et l'autre pour la séquence)

Perspectives

Étude des variations des séquences temporelles d'images

- Utiliser un autre modèle que SQUEEZENET
- Pour l'analyse de vidéos
 - Étudier la zone de violence
 - Ajouter une troisième classe d'arrière plan
 - Classifier l'image des probabilités pour avoir une décision globale
- Appliquer les mécanismes d'attention pour l'analyse de vidéos

Appliquer les deux méthodes proposées dans d'autres domaines tels que le biomédical

Merci pour votre attention

Code source : https://github.com/mchelali/TemporalStability

Prise en compte de l'information spatiale et temporelle pour l'analyse de séquences d'images

Mohamed CHELALI

26 novembre 2021

Préparation des STR de parcelles

• Modèle : SqueezeNet \Rightarrow Taille d'entrée : 224 \times 224

Adaptation des STR à la taille d'entrée

• méthode G-STR

Analyse de parcelles agricoles

Préparation des STR de parcelles

• Modèle : SqueezeNet \Rightarrow Taille d'entrée : 224 \times 224

Adaptation des STR à la taille d'entrée

• méthode G-STR

méthode MS-STR

Classification des parcelles à partir de STIS

• Comparaison avec les méthodes de l'état-de-l'art (EA)

Temps d'inférence

Méthodes	Temps moyen (en secondes)	
G-STR	2.72	
baML (MAURO et al., 2017)	11.91	
TempCNN (PELLETIER, WEBB et PETITJEAN, 2019)	13.50	
MS-STR RW(50)	22.57	
ConvLSTM (RUSSWURM et KÖRNER, 2018)	23.16	
3D-SQUEEZENET (KÖPÜKLÜ et al., 2019)	26.50	
LSTM (IENCO et al., 2017)	26.96	

Classification des vidéos pour la reconnaissance des scènes de violence

- Modèle : SQUEEZENET (IANDOLA et al., 2016)
- Méthode utilisée : MS-STR RW(100)

Méthode	RWF2000	Movies fights	Hockey fights	Crowd Violence
Deep-STaR				
$N_{seg}^{test} = 100$	93.8±0.52	98.5±1.27	94.4±3.93	89.8±2.38
CNN 3D				
Temp. Seg. Nets (WANG et al., 2016)	81.5	94.2	91.5	81.5
I3D (CARREIRA et ZISSERMAN, 2017)	83.4	95.8	93.4	83.4
Represent. flow (WANG et al., 2017)	85.3	97.3	92.5	85.9
Flow Gated Net (CHENG, CAI et LI, 2020)	87.3	n/a	98.0	88.8
ECO (ZOLFAGHARI, SINGH et BROX, 2018)	83.7	96.3	94.0	84.7
Nuage de points				
PointNet++ (QI et al., 2017)	78.2	89.2	89.7	89.2
PointConv (WU, QI et LI, 2019)	76.8	91.3	89.7	89.2
DGCNN (WANG et al., 2019)	80.6	92.6	90.2	87.4
SPIL (Su et al., 2020)	89.3	98.5	96.8	94.5