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Abstract—Satellite Image Time Series (SITS) provide valuable
information for the automatic mapping of our territories. In
this article we focus on the analysis of urban land covers from
SITS, trying to evaluate the density of artificialized areas. We
hypothesize that such areas do not evolve significantly through
time (over the interval of a year) compared to other non-
artificialized areas (e.g., agricultural crops, vegetation). The
proposed approach is based on a spatio-temporal characteristic
measuring the temporal stability of a zone, extracted using
the Run Length Encoding method. Preliminary results obtained
on a series of 41 SENTINEL-2 images highlight the ability of
our approach to discriminate different urban land-cover classes
(e.g., artificial areas, high density vs. low density housing areas).

Index Terms—urban density, satellite image time series, spatio-
temporal features, Run Length Encoding, SENTINEL-2

I. INTRODUCTION

The terrestrial surface is regularly observed by satellites,
leading to a large amount of images. Novel satellite constel-
lations periodically acquire medium-resolution images around
the globe, on the same geographical area, and with increasing
frequency. For example, the SENTINEL-2 sensors produce
optical Satellite Image Time Series (SITS) with a revisit time
of 5 days and a spatial resolution of 10 – 20 meters.

One important application of SITS is the mapping of land
cover (e.g., urban areas, agricultural zones) and the identifica-
tion of land use changes (e.g., urbanization, deforestation). The
growing availability of such temporal data makes it possible
to produce and update accurate land-cover maps of a territory.

This article focuses on the analysis of the land-cover of
urban areas from SITS trying to evaluate the density of
artificialized areas. We hypothesize that artificialized areas
(e.g., housing, industrial areas) in urban environments do not
evolve significantly through time compared to other non-
artificialized areas (e.g., agricultural crops, vegetation). An
approach based on a spatio-temporal characteristic measuring
the temporal stability of a zone is proposed. We do not
aim to study temporal land-cover maps or land use changes
(e.g., urbanization) but to analyze the actual land-cover.

This article is organized as follows. Section II recalls some
existing methods for SITS analysis. Section III introduces our
spatio-temporal characteristic for the analysis of urban density
from SITS. Section IV describes the experimental validation.
Conclusions and perspectives will be found in Section V.
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II. EXISTING APPROACHES FOR SITS ANALYSIS

SITS analysis allows the analysis, through observations of
land phenomena with a broad range of applications such as the
study of land-cover or even the mapping of damage following
a disaster. These changes may be of different types, origins
and duration. For a detailed survey, see [5].

Pioneer methods for analyzing SITS operated on single
images or stacks of images. On each image, the different mea-
surements per pixel were considered as independent features
and involved in classical machine learning-based classifiers. In
such approaches, the date of the measurements was ignored
in the feature space. Bi-temporal analysis can locate and
study abrupt changes occurring between two observations.
These methods include image differencing [4], ratioing [10]
or change vector analysis [11].

Then, we find methods designed more for image time series
and based on multi-date classification approaches such as
radiometric trajectory analysis [18]. Such approaches exploit
the notion that land-cover can vary through time (e.g., be-
cause of seasons, vegetation evolution [17]), and they take
into account the order of measurements by using dedicated
time series analysis methods [3]. Every pixel is viewed as a
temporally ordered (and aligned) series of measurements, and
the changes of the measurements through time are analyzed
to find (temporal) patterns.

Concerning the type of features, “frequency-domain” ap-
proaches include spectral analysis, wavelet analysis [2] while
“time-domain” approaches involve auto-correlation and cross-
correlation analysis. Concerning the classification method, the
classical way is to measure similarity between any incoming
sample and the training set; and assign a label to the most sim-
ilar class using e.g., the Euclidean distance based on a nearest
neighbor algorithm or the Dynamic Time Wrapping method
[13]. Deep learning approaches have also been recently con-
sidered [6], [8]. Finally some methods first transform the SITS
into a new space to extract more discriminative “hand-crafted”
features [14], [16] in order to be used by a classifier.

In this work we adopt this last strategy. Our hypothesis
relies on the fact that artificialized areas (housing areas,
industrial zones) in urban environments do not evolve sig-
nificantly through time compared to other non-artificialized
areas (agricultural crops, urban vegetation, etc.). For instance
the radiometric value of a pixel representing a building roof
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Fig. 1. Flowchart of the method for urban land-cover analysis from SITS based on temporal stability.

should remain stable through time over the interval of a year,
if no abrupt change appears. We propose an approach based
on a spatio-temporal characteristic measuring the temporal
stability of a zone using a classical compression technique.
This classic lossless compression technique is known as Run
Length Encoding (RLE) [7]. It was already used for time series
analysis in [1], [15].

III. PROPOSED APPROACH

We present a labeling method not relying on an explicit
learning phase. This labeling is based on a “hand-crafted”
spatio-temporal characteristic we define, it measures the tem-
poral stability of a zone. This enables to apply the method
in various sensed regions without requiring a learning phase.
Clustering method can be applied with a minimum of param-
eters to be tuned and transferred. Besides, the labeling can be
performed at pixel level or at block level, depending on the
application. Pixels or blocks will be characterized and then a
clustering approach enables to take a decision in urban zones.
The flowchart of the method is presented in Figure 1.

A. Spatio-temporal stability feature

The material being a SITS (It)t∈J1,T K, images are labeled
with the acquisition date t, and a spatial domain D on which
the images are registered, the purpose is to define spatial
domains with rather homogeneous properties in terms of
temporal stability with respect to the pixel value, either scalar
or vectorial (e.g., panchromatic / multi-spectral values, NDVI).

The characteristic we are to define is the duration of the
longest laps of time where the pixel labels stay “constant”, it
will be noted MS for “Max Stability”. It can be defined for a
pixel p and we extend it to a spatial domain Z. The core of the
method is twofold, it lays in the definition of “constant” and
of the spatial domains on which the computation is performed.

First let us consider a pixel p. The temporal evolution of
the pixel value along the (It)t series can be compressed using
the sequence RLE [7]. We define MS(p) as the length of the
longest run expressed in days. The run can be placed at any
time, only its length is considered.

When a zone is considered, Z = {pi}ni=1 the extension of
MS function is achieved using an operator ⊥ applied to all
MS(p) in the zone as

MS(Z) = ⊥n
i=1MS(pi) (1)

B. Equality definition
The equality of values is not always significant, since the

pixel values being either continuous or discrete in intervals
such as [0, 255] or hypercube when vectorial values are
considered.. Furthermore pixel values at different dates are
compared whereas the acquisitions are different. Then, a new
definition has to be given to the term equal and we have
achieved this, based on a quantization of the pixel values.
The quantization cannot be applied to each image, it would
lead to non comparable values when the acquisition dates are
different. It has to be done at a global level of all the pixels
of (It)t. The quantization could be regular, fixed with respect
of the usual distribution of the values or it can be adapted to
the image series, to the nature of the characteristic used. The
latter has been our choice. This can avoid a learning phase.
Independently of the structure of the characteristics consid-
ered, a clustering algorithm enables to define the significant
values. In our case a k-means algorithm, kquantiz being a
parameter of the method, is used and different values have
been experimented according to the precision needed in the
problem to be solved. Then, the pixel values are replaced by
the cluster label belonging to {1, 2, . . . , kquantiz} defining new
scalar images (Jt)t. MS is thus computed on (Jt)t.

C. Global or local temporal approach
The previous characteristic can be computed at a global or

a local temporal level.
As the images in the collection are not regularly distributed

along the year, an interpolation makes possible to complete
the series to build one image each day figuring a virtual
acquisition. In our case a linear interpolation was simply per-
formed. Then, the temporal interval of study can be recovered
with N overlapping or non-overlapping sub-intervals of the
same duration in order to make comparisons possible with
equal temporal distances between consecutive images. In our
case we considered a local duration of one month. The max
stability values at each pixel on the local temporal blocks were
obtained as previously defined at the global level, leading then
to a spatio-temporal characteristic. This local study enables,
either at the pixel level or at the zone level to compute N
max stability values associated with these entities. The entity
representation of the image domain is done in RN .

Whether we consider the local or global approach to com-
pute MS, an image Is is defined on the domain D. It is
either a scalar (temporal global approach) or a vectorial image
(temporal local approach).



D. Decision strategy
From the information of the max stability value or the

temporal vector of local max stability values, a decision on
the urban land use of the soil has to be taken with more or
less precision. The strategy differs according to the targeted
goal. We considered two different objectives, either the finding
of homogeneous regions with respect to the urban density or
the labeling of (already delineated) urban blocks.

1) Pixel level: The brighter a pixel of the Is image is, the
more stable the associated space is. As only temporal infor-
mation has been used and no spatial information, a smoothing
of the Is image is needed. A gray level morphological dilation
with a square structural element of size d is performed. Then
the decision is deduced from a clustering, a k-means clustering
in our case. As the parameter kdecision is monotonic with
the longest stable duration, the center of the classes can be
ordered. Thus, the pixels can be labeled according to the value
of their cluster inertia center. We hypothesize that highest
values correspond to the most dense zones.

2) Block level: In order to label a block Z according to its
max stability, first a ⊥ operator has to be defined. A vectorial
characteristic is defined as the (composition) histogram of the
MS(p) in the zone. Such “composition histogram” strategy
already showed its interest in the case of urban areas in [12].
The bins of the histogram are defined at a global level on
the whole image Is by way of a k-means algorithm using
the kbin parameter. The final label associated with the block
is obtained by applying a final k-means algorithm on the
vectorial characteristic, kdecision being the parameter.

IV. EXPERIMENTAL STUDY

Our approach has been employed for the analysis of urban
land-covers from a series of satellite images. As validation,
two scales of analysis were considered: the large urban dis-
tricts and the urban blocks, with finer thematic classes.

A. Material
The study area is the city of Strasbourg, France. There are

41 SENTINEL-2 images (1000×1000 pixels) sensed in 2017
(Figure 2(a) shows an image of the SITS). The optical products
have been orthorectified.

From these images, we considered different characteristics,
the Normalized Difference Vegetation Index (NDVI), the Nor-
malized Difference Water Index (NDWI) and the Brightness
Index (BI) built from the multi-spectral product, at a spatial
resolution of 10m. Actually, these physical variables values
are quite comparable to each other through the series, and are
quite consistent indexes for sensed urban scene description.

These characteristics are considered individually to compute
MS, leading to INDV I

s , INDWI
s , IBI

s or combined together
I?s at the decision stage (each channel of I?s is considered as
an independent attribute in the final k-means algorithm).

B. Evaluation strategies
Our results have been evaluated with ground-truth (GT)

maps, extracted from the CIGAL2011-2012 database (https:
//www.cigalsace.org/). Two scales were considered:

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Illustration of the data and results: (a) 1st image of the SITS; (b)
zoom on a result: global temporal method, INDV I

s ; (c) zoom on a result: local
temporal method, INDV I

s ; (d) GT map at the the “urban area” level (Artificial
surfaces (red), Agricultural surfaces (yellow)); (e) pixel level decision: global
temporal approach, kdecision = 4, INDV I

s ; (f) pixel level decision: local
temporal approach, kdecision = 4, INDV I

s ; (g) GT map at the “urban
blocks” level (3 classes are considered: high density housing areas (red), low
density housing areas (orange), Vegetation and agricultural surfaces (yellow));
(h) block level decision: global temporal approach, kdecision = 7, INDV I

s .
(i) block level decision: local temporal approach, kdecision = 7, INDV I

s ).

• the “urban area” level (1/250000) to map the territory
(see GT map on Figure 2(d)), with a low detail level,
enabling to study the large urban districts (artificialized
surfaces vs. agricultural surfaces).

• the “urban blocks” level (1/10000), blocks being de-
fined as the minimal cycles formed by communication
ways. The GT map (Figure 2(g)) contains 1069 blocks
(polygons) labeled with 3 thematic classes (high density
housing areas, low density housing areas and agricultural
& vegetation surfaces). Miscellaneous zones are in black.

The pixel-based decision level of our approach was validated
at the “urban area” scale while the block-based decision level
was validated at the “urban blocks” scale.

As quality indexes, we derived from our clustering results
and the GT maps a confusion matrix, from which we computed
the classical recognition rate (RR), precision (P), recall (R) and
F1-measure (F). We selected automatically the best mapping
between clusters and thematic classes by optimizing the RR.

C. Obtained results

As explained in Section III-B, the MS characteristics have
been computed on quantized pixel values. We set empirically



TABLE I
QUALITY OF THE RESULTS FROM COMPARISONS WITH GT MAPS.

Temporal approach Config. RR P R F

Pi
xe

l
le

ve
l

de
ci

si
on

Global temporal

INDV I
s 89 88.93 89 88.98
INDWI
s 86.24 86.86 86.25 86.55
IBI
s 84.5 84.75 84.50 84.63
I?s 89.84 89.76 89.85 89.80

Local temporal

INDV I
s 81.7 82.7 81.7 82.2
INDWI
s 80.24 80.55 80.25 80.4
IBI
s 76.47 79.2 76.48 77.81
I?s 83.14 84.64 83.15 83.89

B
lo

ck
de

ci
si

on Global temporal
INDV I
s 78.48 77.98 78.48 78.23
INDWI
s 69.59 60.77 69.60 64.89
IBI
s 72.02 73.06 72.03 72.54

Local temporal
INDV I
s 74.18 74.50 74.18 74.34
INDWI
s 68.75 68.06 68.76 68.41
IBI
s 67.25 66.26 67.26 66.75

kquantiz equal to 4.
We used the pixel level decision strategy from INDV I

s ,
INDWI
s , IBI

s and I?s by considering both the global and local
temporal approaches. For the local temporal approaches, N
was set to 23 with month overlapping temporal intervals. We
evaluated the results by experimentally varying kdecision from
2 to 10. Best results were obtained when kdecision = 4 so
we kept this value for all experiments. We also evaluated the
impact of the size d of the structural element of the dilation.
The d value was then fixed at 5.

Table I (first two lines) presents the quantitative results
while Figure 2(e, f) illustrates visual results. From the quan-
titative results, we observe that, overall, the global temporal
approach provides higher accuracy scores on this application
than the local temporal approach. The combination of the
different features in I?s , slightly improves the accuracy scores,
showing the complementary of the features. When we visual-
ize the computed characteristics (Figure 2(b, c)), we observe
that the local approach makes it possible to discriminate finer
temporal stability behaviors in peri-urban areas than the global
approach. However the (coarse) scale of the GT does not allow
to take this into account in the quantitative analysis.

We used the block level decision strategy from INDV I
s ,

INDWI
s and IBI

s by considering both the global and local tem-
poral approaches. We considered the composition histogram
strategy by varying both kbin and kdecision from 2 to 10.
Best results were obtained with kbin = 8 and kdecision = 7
for INDV I

s . The results are summarized in Table I (last two
lines), and some visual illustrations are shown in (Figure 2(h,
i)). Here also the global temporal approach provides higher
accuracy scores on this case. This can be due to our equality
definition that we plan to improve as mentioned later.

V. CONCLUSION AND PERSPECTIVES

We presented in this article an approach for studying urban
land-cover classes from SITS. This method is based on the
definition of a spatio-temporal characteristic trying to locate
the long period where the pixel values stay stable trough
time. An experimental study has been conducted on a series
of SENTINEL-2 images. The preliminary results obtained

highlight the ability of this approach to discriminate different
urban land-cover classes. In another context, in [9], the results
obtained on urban land-cover analysis from SITS at the
country scale have an accuracy at the same level for high
and low density housing classes. As a short-term perspective,
we plan to work on the notion of equality, used to decide
if a pixel value is stable through time. For instance, when
the characteristic is vectorial, it is possible to try different
definitions of the equality, leading to a more or less constrained
equality definition. Such vectorial approach is more suited
when the considered scalar characteristics are independent,
that is not yet the case with those involved in our application.
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[12] C. Kurtz, N. Passat, P. Gançarski, and A. Puissant. Multiresolution
region-based clustering for urban analysis. Int. J. Remote Sens.,
31(22):5941–5973, 2010.

[13] F. Petitjean, J. Inglada, and P. Gançarski. Satellite image time series
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