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Image time series, such as Satellite Image Time Series (SITS) or MRI functional se-

quences in the medical domain, carry both spatial and temporal information. In many

pattern recognition applications such as image classification, taking into account such
rich information may be crucial and discrimative during the decision making stage.

However, the extraction of spatio-temporal features from image time series is difficult to

handle due to the complex representation of the data cube. In this article, we present a
strategy based on Random Walk to build a novel segment-based representation of the

data, passing from a 2D+t dimension to a 2D one, more easily manipulable and without

losing too much spatial information. Such new representation is then used to feed a clas-
sical Convolutional Neural Network (CNN) in order to learn spatio-temporal features

with only 2D convolutions and to classify image time series data for a particular classifi-

cation problem. The influence of the way the 2D + t data are represented, as well as the
impact of the network architectures on the results, are carefully studied. The interest

of this approach is highlighted on a remote sensing application for the classification of
complex agricultural crops.

Keywords: Image Time Series; spatio-temporal features; Random Walk; Convolutional

Neural Networks; Remote Sensing; Satellite images.

1. Introduction

An image time series is an ordered set of images taken from the same scene at

different dates. Such data provide rich information with the temporal evolution of

the studied area. In remote sensing applications, many constellations of satellites

acquire images with a high spatial, spectral and temporal resolution around the

world leading to Satellite Image Time Series (SITS). For example, the Sentinel-2

sensors produce optical SITS with a revisit time of 5 days and a spatial resolution

of 10 – 20 meters.

Such series of images help understanding environmental evolution, studying the

causes of various changes, and predicting future evolution. Temporal information,

integrated with spectral and spatial dimensions, enables in particular, the analysis

of complex patterns involved in applications related to land cover mapping (e.g.

agricultural zones, urban areas) or to the identification of land use changes (e.g.
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urbanization, deforestation) and the production of accurate land-cover maps of a

territory.11

A major issue when analyzing image time series is to consider simultaneously

the temporal and the spatial dimensions of the 2D + t data-cube. In this context,

state-of-the-art methods for SITS analysis are actually mainly based on temporal

information16 at pixel level. But in some specific applications, this may not be

sufficient to get satisfactory results. Taking both temporal and spatial aspects into

account at the same time can, for example, make it easier to discriminate between

different complex land cover classes (e.g. agricultural practices for a specific crop,

urban vs. peri-urban areas). Note that here, our objective is to classify complex

land-cover classes prone to confusions when a single date image is used.

This article focuses on the problem of spatio-temporal feature extraction for the

classification of image time series, using a deep learning strategy. In this context,

we define a novel spatio-temporal representation of image time series that makes

it possible to consider classical Convolutional Neural Network (CNN) frameworks,

originally proposed for the analysis of 2D images. Our methodological contribution

is the proposal of a transformation to represent 2D+ t data as 2D images without

losing too much spatial information. It relies on the construction of sets of (1D)

segments using a Random Walk paradigm to decrease the spatial dimension of the

data. This new data representation is then used to feed a CNN in order: (1) to learn

spatio-temporal features with only 2D filters, involving at the same time temporal

and spatial information, and (2) to classify image time series data according to a

particular thematic problem.

We also study the influence, on the decision made by the system, of the way the

2D + t data are represented (temporal vs. spatial information), and the impact of

the network architectures (number of parameters to be optimized), on the learned

spatio-temporal convolutional features.

The remainder of this article is organized as follow. Section 2 presents some

related works for SITS analysis. Section 3 describes the proposed representation of

the image time series for a CNN-based analysis. An experimental study, focusing

on the classification of agricultural crops in the remote sensing domain is described

in Section 4. Section 5 discusses the obtained results with our approach and com-

parative methods. Finally, conclusion and perspectives will be found in Section 6.

2. Related works on SITS analysis

SITS enable the observation of the Earth surface at multiple instants. Such data

improves our knowledge and understanding of environmental evolution and changes,

which may be of different types, origins and duration. For a detailed survey, see.5

Pioneer methods processed single images from image stacks. On each image, dif-

ferent measurements per pixel were considered as independent features and involved

in classical machine learning-based procedures. In such approaches, the date of the

measurements was ignored in the feature space. Methods designed for bi-temporal
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analysis locate and study abrupt changes occurring between the two observations.

These methods include image differencing,3 ratio-ing13 or vector change analysis.14

Another family of methods is more directly dedicated to the analysis of im-

age time series. Most of them are based on multi-date classification. Among them,

we find radiometric trajectory analysis.24 These methods exploit the evolution of

land cover (e.g. seasons, vegetation evolution21), and take into account the chronol-

ogy by using dedicated time series analysis methods.2 Every pixel is considered as

temporally ordered (and aligned) series of measurements, and the changes in the

measurement values through time are analyzed to find (temporal) patterns, using

statistical or symbolic approaches.

Some methods first propose a new representation of the SITS into a new space.

We can cite “frequency-domain” approaches that include spectral analysis, wavelet

analysis.1 Other methods extract more discriminative “hand-crafted” features from

a new enriched space.4,18,19 Concerning the classification step, the classical ap-

proaches measure similarity between any incoming sample (that can be enriched

with the “hand-crafted” features) and the training set. They assign the label of the

most similar class using e.g. the Euclidean distance based on a nearest neighbor

algorithm or / and the Dynamic Time Wrapping method.17

More recently, deep learning paradigms have been considered to classify remote

sensing images and generate land-cover maps. In general, Convolutional Neural

Networks (CNN) are used to deal with the spatial domain of the data by applying

2D convolutions.8 When dealing with image time series, convolutions can be ap-

plied in the temporal domain.16 Another type of deep learning architecture that is

designed for temporal data is Recurrent Neural Network (RNN) such as Long-Short

Term Memory (LSTM), used successfully in.10,20 In this context, deep learning ap-

proaches outperform traditional classification algorithms such as Random Forest,12

but they do not directly take into account the spatial dimension of the data as

they consider pixels in an independent way. Some approaches have been proposed

to consider both the temporal and the spatial dimensions of the 2D+ t data-cube.

A common strategy is to train two models, one for spatial dimensions and one for

the temporal dimension, then to fuse their results at the decision level.6 In video

analysis, spatio-temporal features are learned directly using deep 3D convolutional

networks23 but such strategy requires the learning of a huge number of parameters

to define a good model.

In this paper, our strategy is to classify a SITS using a classical 2D CNN

model, thanks to a new representation of image time series embedding simultane-

ously temporal and spatial information of the data-cube. We compare our results

with competitive approaches, including the use of 1D convolutions applied in the

temporal domain16 to classify temporal pixels (which is the current state-of-the-

art). This enables to assess the plus-value of considering spatio-temporal features

instead of solely temporal ones when classifying image time series.
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Fig. 1: Flowchart of our method for image time series deep classification based on

a planar spatio-temporal data representation obtained from Random Walk based

segments: (top) off-line (i.e. learning) phase and (bottom) on-line (i.e. testing) phase

of the classification process.

3. Multi-Segment Spatio Temporal Representation (MS-STR) for

SITS analysis

The proposed method aims to classify image time series from spatio-temporal fea-

tures. The underlying strategy is to use a 2D input in a classical deep neural network

architecture in order to learn a spatio-temporal model from the 2D + t data. Fig-

ure 1 illustrates the global workflow of our system, with the traditional off-line (i.e.

learning) and on-line (i.e. testing) phases of a classification process. Since our sys-

tem is dedicated to classification of objects of interest (e.g. agricultural crops from

satellite images), the initial input data may be an image centered over a specific

object, an image patch, or only the connected pixels of a region of interest (ROI),

modeled as a polygon. In any case, we will use the term “image” for the input data.

We manage to consider some 2D elements to perform the learning phase in

the off-line process. In this way, we differ from other approaches considering a 1D

structure16 or a 3D one23 as we find in the state-of-the-art methods.

To this end, we start by transforming the original 2D+t data into planar entities

containing spatio-temporal data built from 1D spatial segments over time. We refer

to our method as Multi-Segment Spatio Temporal Representation (MS-STR). Such

a representation is then transferred as the input of a CNN to achieve a classification

of the segments that are built in off-line and the classifier is then used in the on-line

process. The network is trained in order to learn the labels from both the spatial,
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as well as the temporal information contained in the data.

3.1. Data transformation

We first explain how to transform the original 2D + t data to less complex 2D

representations that contain spatio-temporal data built from 1D spatial segments.

From pixels to segments. Traditional methods that only handle temporal infor-

mation consider the 2D domain as a set / bag of pixels, i.e. 0D entities. The pixels

are generally characterized by the temporal series of the pixel intensities. In our

case, we include some spatial information, leading to the notion of segments which

are 1D spatial entities. An input image is then replaced by a set of 1D segment

entities, where L is the length of the segments included in the input image.

In a 1D segment each pixel has 2 neighbors, except for the two extreme pixels.

Our transformation will then decrease the spatial information with keeping only 2

nearest neighbors.

Different strategies to define 1D segments in the original 2D space are stud-

ied and compared in this work. For each chosen strategy, we apply the process

Np times from an input data, producing Np different segments, in order to keep

enough neighbors; the pixel orders are then chosen according to a parametrization

of these segments. In this way, the spatial representation complexity of the images

is decreased, from 2D to 1D segments.

Next, the segments characterized with temporal information, leading to the

notion of 2D spatio-temporal data, are classified.

From segments to 2D representations. For a given series composed of N

images (i.e.N temporal acquisitions), segments are first extracted. They are used for

the learning of the classification model. The segment pixels are spatially represented

by the pixel index within the segment. These 1D spatial segments will now be

enriched with temporal information to build 2D spatio-temporal data (see top of

Figure 1).

With each of the Np segments, we associate a 2D structure. In the abscissa,

is considered the index of the pixel in the segment (from the initial pixel) and in

the ordinate, is considered the evolution of the intensity of the pixels over time.

This leads to a novel 2D representation composed of N rows (N is the number of

images in the SITS) in the temporal domain and L columns (L is the length of the

considered segment) in the spatial domain. This image can then be interpreted as

a partial spatio-temporal 2D representation of the input 2D + t image time series.

When applying the transformation process to the Np segments, we finally obtain

Np spatio-temporal 2D representations from the original image time series, called

Multi-Segment Spatio Temporal Representation (MS-STR). These representations

will be used as input of a learning process, the segment classes are the classes of

the annotated input image they belong to.
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(a) Google Earth image (1665 ×
2056 pixels)

(b) Sentinel-2 image at 06-18-
2017 (62× 78 pixels)

(c) Spatio-temporal representa-
tion associated with the yellow
segment in (b)
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Fig. 2: Spatio-temporal representation from an image time series: (a) a high resolu-

tion image taken from Google Earth sensed over a particular agricultural area; (b)

a Sentinel-2 image sensed on June 18, 2017 in false color (near-infearned NIR, red

R and green G). This image belongs to a SITS sensed during the year 2017 over

the same region as the Google Earth image; (c) A spatio-temporal representation

created from the yellow segment in the Sentinel-2 image.

For illustrative purpose, Figure 2(a) displays a Google Earth high resolution

image of a specific agricultural area while Figure 2(b) shows a Sentinel-2 image

of the same region acquired on June 18, 2017. The Sentinel-2 image belongs to a

SITS sensed over the year 2017. This image is depicted in false color (NIR, R, G

that represent respectively the near-infrared, red and green spectral bands). The

yellow segment drawn on these two images is passing through different zones, on

the left part is a forest, then in the middle is a house and finally on the right are

two meadows that are not of the same type. Figure 2(c) finally shows the spatio-

temporal 2D representation created from this horizontal yellow segment. In this

representation, the dashed yellow segment is showing the date where the Sentinel-2

image in (b) has been acquired.

In the left part of the representation, we can observe that a zone rather ho-

mogeneous on the horizontal direction is associated with the forest zone, the red

zone indicates the presence of active chlorophyll from June to October. Then, in

the middle a long and narrow bluish rectangle is associated with the house with

low value in the NIR that is more generally linked to vegetation. In the right part

is an other region where can be distinguished two behaviors, a first meadow with a

red temporal interval indicating that the grass is growing, and the second meadow

where the vegetation growing occurs during a shorter temporal period. This may

indicate that the meadow has been cropped in the late Spring, the vegetation is

then stopped and a blue zone is present. We can also notice that the grass is growing

before the tree leafs.
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3.2. Segment construction strategies

In this study, two different strategies were considered to build segments:

• Scanning strategy (scan). Here we consider all the rows and columns

of pixels in the input image to build 1D segments. The dimensions of the

input image limit both the number and the lengths of possible segments.

To guarantee similar lengths L for each segment, it is needed to replicate

the values on segments shorter than L (this may correspond to segments

extracted from the borders of the image). In this way, the pixels are con-

sidered only twice in the new representations, and for each pixel, only 4

neighbors are considered, the 4 nearest neighbors.

• Random Walk (RW) based segment. A Random Walk7 is a math-

ematical process based on a random iterative process. Each iteration is a

step with Markovian properties. Here, the Random Walk is used to gener-

ate a random segment in a 2D image space with length L, noted RW (L).

The first point of the segment is chosen randomly on the 2D image and for

next point, 8 directions are possible.

Given an input image, we proceed to Np initializations of Np Random

Walk segments. For each one, a 2D image is then built, where the rows

correspond to the pixel values of the pixels in the segment extracted from

the different images of the series. The chronology is related to the line

number. The middle of the on-line part of Figure 1 illustrates the spatio-

temporal representations from three different segments built from an input

image.

These two types of segments present several differences. On the one hand, RWs

consider a larger number of neighbors for each pixel. Then the variety of information

on the spatial configurations is larger than in the scan approach. On the other hand,

in the scan approach, the number of segments is limited whereas in the other case,

the segments are randomly initiated.

3.3. CNN model (architecture)

Convolutional Neural Networks (CNN) refer to the family of deep learning algo-

rithms. CNN-based systems are generally composed of two parts. The first one is

designed to feature extraction, it has many neuron layers that apply convolutions

on the previous ones. The neurons of each layer are activated by non-linear func-

tions (e.g. sigmöıde, ReLU) in order to keep the most representative features (high

order features). We find also max-pooling layers between convolutional layers to

reduce progressively the quantity of the inputs and the number of the parameters

to be computed to define the network, and hence to also control over-fitting. The

second part may be a classifier. Generally, it is fully connected layers that provide

a probability vector, on which is plugged a softmax function to predict the class

label of input data.
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We have chosen the SqueezeNet model9 as baseline CNN but any other 2D CNN

model can be used and we will achieve some comparisons in order to discuss the

complexity of the concrete problem that will be used to illustrate our methodology.

SqueezeNet has interesting theoretical properties, few parameters, and reaches the

same accuracy level as the AlexNet model on the ImageNet dataset. The training of

the model is then faster. The architecture of SqueezeNet introduces a new module

called Fire composed of a squeeze layer using 1 × 1 convolution filters followed

by expand layer that contains a mix of 1 × 1 and 3 × 3 convolution filters. Also,

its classifier is based on a global average pooling over feature maps, potentially

decreasing the overfitting effect. The CNN model, whatever it is, is trained with

the 2D spatio-temporal representations, i.e. the MS-STR, obtained from each input

image time series from the training set.

3.4. Decision making at polygon level

As already mentioned, our input data are polygons representing objects of interest

in SITS. Each input data is associated with a set of Np segments, leading to a

MS-STR. Np is consequently a parameter of the method. With each segment is

associated a 2D planar spatio-temporal representation. Thanks to the classifier

described in Section 3.3, a class label is predicted for each 2D spatio-temporal

representation (i.e. for each segment) with some probability. To classify a polygon,

we proceed by taking average of the returned probabilities by the model for the Np

segments of the polygon and we affect the class label with the highest probability,

ensuring ultimately a unique decision per MS-STR, and consequently per input

image.

3.5. Implication of temporal and spatial information in the process

In order to show the capacity of the proposed representation to carry both types of

information (spatial or temporal), we propose different approaches. First, we can

compare the results obtained when considering the SITS as a whole, by considering

our MS-STR approach, or when considering only the set of temporal pixels, as

proposed by most of the state-of-the-art methods such as TempCNN.16 This will

allow to assess the importance of spatial information.

Second, we propose to analyze the convolutional filters learned in the CNN

learning process. In the first layers of the CNN, the convolution kernels are pro-

cessing in vertical the temporal aspect and in horizontal the spatial aspect. Our

aim is to analysis the type of information (temporal vs. spatial) captured by each

filter. For this, we first build synthetic images with only temporal information It
and with only spatial information Is. These fake images are provided as input to the

CNN, learned in the off-line process. For each filter (k index) of the first layer, the

energy of the answers is computed and noted Ek(It) and Ek(Is). The computation

of the spatio-temporal ratio Rst(k) between the two energies indicates which aspect
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(spatial or temporal) is more or less associated with the k filter:

Rst(k) =
Ek(Is)

Ek(It)
(1)

We can consider three types of filters:

• spatial filters are those that are more linked to the spatial variations: the

ratio Rst(k) is greater than 1 + µ;

• temporal filters are those that are more linked to temporal variations:

the ratio Rst(k) is lower than 1− ν;

• spatio-temporal filters are those where the ratio Rst(k) is between 1−ν
and 1 + µ; they are linked both to temporal and spatial variations.

Here, µ and ν are parameters to be chosen.

4. Experimental study

The experimental study is focused on a remote sensing application, the classifi-

cation of agricultural crop fields from a SITS. We consider a binary classification

task, where the goal is to discriminate within two agricultural thematic classes:

traditional vs. intensive orchards. The automatic identification of these classes is a

complex task since orchards are subject to many agricultural practices depending

on the season and the territory management policy. In order to differentiate these

two classes, spatio-temporal features carry useful information to discriminate the

agricultural practices.

4.1. Material

We dispose of a SITS provided by the satellite Sentinel-2, containing N = 50

optical images sensed in 2017 over the same geographical area (East of France –

tile 32ULU). Figure 3 displays the temporal distribution of the images belonging to

the SITS. The images have been corrected and orthorectified by the French Theia

programa to be radiometrically comparable. We also dispose of the cloud, shadow

and saturation masks associated with each image. A preprocessing step was applied

on the images with a linear interpolation on masked pixels to fill the missing values

in the SITS.

For each image, only three bands are kept which are near-infrared (Nir), red

(R) and green (G). The blue band (B) is considered as useless in the literature to

discriminate different kinds of agricultural fields and is also sensitive to atmospheric

effects. All these bands have a spatial resolution of 10 meters.

The used reference data are extracted from the (freely distributed) RPGb, which

is the official agricultural parcel delineations (in our context orchards). Some exam-

ples of polygons are represented in Figure 1. These polygons have been corrected

ahttps://theia.cnes.fr/
bhttp://professionnels.ign.fr/rpg
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Fig. 3: Temporal distribution of the images from the SITS over the year 2017.

Table 1: Summary of the data: (first col.) Initial number of polygons per class; (two

last col.) Number of spatio-temporal segments depending on the segment construc-

tion strategy.

Classes # polygons
# Spatio-temp. rep.

for scan

# Spatio-temp. rep.

for RW

Int. orchards 137 2 998 10 609

Trad. orchards 193 2 024 12 555

Total 330 5 022 23 164

by photo-interpretation to ensure a good delimitation of the parcels. The reference

data used in our experiment are the semantic labels of these polygons (traditional

or intensive orchards). These polygons are leading to a new time series of polygons,

noted Polygon Image Time Series (PITS).

4.2. Data preparation

First, PITS are formed, then we analyze the importance of the spatial relationship

of pixels, so Np segments are extracted from the ROI. For the scan strategy, the

number of possible 1D segments depends on the ROI size. For the RW strategy,

we made the Np value depends on the area (i.e. number of pixels) of the ROI. In

our case we consider a percentage of the number of pixels to set the Np value. The

chosen percentage is 50% of the ROI area. The average number of segments for the

scan strategy is 487 with a standard deviation equal to 110. Table 1 displays the

number of instances of polygons per class and the number of segments built from

these data according to the segment construction strategy.

In the following, we study the impact of the length L of the segments. This

enables to evaluate the impact of adding more spatial information to learn spatio-

temporal features instead of considering single 0D pixels, as this is the case in most

of the classical approaches. The used lengths L are 10, 50, 100 and 224. The largest

one depends on the maximum input size of the CNN SqueezeNet model. When

building the 224× 224 2D image from the segments, if the segments are less than

224 pixel long, we center them horizontally and the rest of columns are fixed to

zero value. Table 1 indicates the actual number of segments.

For the temporal dimension (vertical axis), we propose two strategies. The first

one is to center the original information from the N input images vertically (N =

50). The remaining top and bottom lines are fixed to zero value. The second one
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(a) (b)

(c) (d)

Fig. 4: Training phase loss curves, according to the length L of Random Walk paths:

(a) L = 10; (b) L = 50; (c) L = 100 and (d) L = 224.

is to fill the 224 values by applying a linear interpolation in the STIS on time

information. We assume that the temporal information between two consecutive

dates is monotonic and linear. The interpolation is then done by considering that

we only have 224 days in the year so that one day is done with about 39 hours. For

the initial dates (beginning of the year of 224), we affect the temporal information

of the first date in the SITS. For the last dates (end of the year of the 224), we

affect the last known temporal information in the SITS.

The data normalization is a linear transform based on the maximum and the

minimum values of the dataset after values are limited with 2% (or 98%) percentile,

as suggested in.16

4.3. Learning and validation protocol

The experiments are validated using a five-fold cross validation strategy. Each time,

we split the dataset into three subsets at polygon level with sizes of 60%, 20% and
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Table 2: Classification results (overall accuracy – OA and standard deviation –

STD) obtained with our spatio-temporal representations.

MS-STR From scratch Fine-tuning

Lengths of the segments OA STD OA STD

with original temporal information (N=50)

scan(10) 64.24 7.42 74.54 2.60

RW(10) 63.33 1.76 87.27 1.54

RW(50) 63.33 1.76 94.84 1.54

RW(100) 62.72 1.54 95.75 1.48

RW(224) 63.93 4.22 95.75 2.42

with temporal interpolation (N=224)

scan(10) 61.51 3.53 76.06 2.60

RW(10) 69.69 1.15 88.78 2.96

RW(50) 92.72 2.42 95.75 1.13

RW(100) 92.12 3.76 96.66 0.60

RW(224) 87.27 6.68 97.27 1.13

20% representing respectively training, validation and test sets. The CNN model is

then trained and evaluated five times at decision level. In the end, we report the

average overall accuracy (OA) of the five splits and indicate the standard-deviation

(STD).

The model is trained using Adam optimizer with a learning rate of 10−6 and

default values of the other parameters (β1 = 0.9, β2 = 0.999 and ε = 10−8) with a

batch size of 8. We limit the number of epochs to 2000, following an early stopping

technique with a patience number of 100. The experiments are done on a laptop

machine with a Nvidia GPU model GTX 1050 Ti with Max-Q Design (4GB). We

used the Pytorch implementation of SqueezeNetc.

According to the limited number of polygons, the training is operated with two

strategies. In the first one, the model is trained from scratch and in the second one it

is initialized with weights obtained with the ImageNet database in a classification

problem (ILSVRC challenge) and then fine-tuned with our data.

5. Results and discussion

In this section we present the results of different experimental studies, enabling

to analyze the different aspects both of the concrete problem and of the system to

solve it. First, we consider the length of the segments and spatio-temporal represen-

chttps://github.com/pytorch/vision/blob/master/torchvision/models/squeezenet.py
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Table 3: Classification results (overall accuracy – OA and standard deviation –

STD) with the different architectures of TempCNN16 and a LSTM.10

TempCNN16 architectures LSTM10

Nb filters 16 32 64 128 256 512 1024 (n.a.)

with original temporal information (N=50)

OA 70.60 70.00 79.22 68.78 71.51 77.27 77.57 44.84

STD 6.68 9.45 7.35 4.24 1.76 4.97 7.00 2.26

with temporal interpolation (N=224)

OA 74.54 80.90 81.21 78.18 81.81 78.48 81.21 61.51

STD 8.15 4.94 7.01 5.63 6.57 6.16 4.94 6.74

tations, then we consider the use of different CNNs and we discuss their efficiency.

Finally, we study the temporal or the spatial adaptation of the convolutions in the

first layer of the learned CNN.

5.1. Influence of segment lengths and number of dates

The proposed 2D spatio-temporal representations are used to feed the chosen CNN.

For the scan strategy, we just use the segment length L of 10 since we are limited

by the frontiers of the ROIs. At segment level, Figure 4 illustrates the obtained

loss curves when the model is trained from scratch with the different lengths of

the RW segments, respectively 10, 50, 100 and 224. We observe that the training

is done in the best conditions with the different lengths of the Random Walk. In

the loss curve of RW(10), we observe strong oscillations in the curve which is not

the case in others. This is potentially due to the lack of information in the images

provided to the CNN (a lot of zero –black– values in the input image), and each

time when increasing the length L, the validation loss (orange curve) decreases

leading to better learning rates without losing in generalization capacity.

In the first experiment, we consider the original PITS composed of N = 50

images. The on-line classification results (overall accuracy) with spatio-temporal

representations (with original dates) are reported in Table 2 (upper part). All the

scores are in the same range. It can be noticed that in the result obtained with a from

scratch learning strategy, scan(10) is slightly better but this has to be tempered

by the very high standard deviation value. Indeed, with the different lengths of

the Random Walk, we kept spatial information that allows to distinguish between

the two considered classes (traditional and intensive orchards). When the lengths

increase, the accuracy increases too showing the importance of spatial information.

As expected, the learning achieved through a fine-tuning process enables to obtain

a classification with about 20% better accuracy. The best results are obtained with
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Table 4: Architecture of a small custom CNN.

Layer (type) Output Shape # Params

input [-1, 3, 224, 224] 0

Conv2d-1 [-1, 64, 110, 110] 4,864

BatchNorm2d-2 [-1, 64, 110, 110] 128

ReLU-3 [-1, 64, 110, 110] 0

Conv2d-4 [-1, 64, 54, 54] 36,928

BatchNorm2d-5 [-1, 64, 54, 54] 128

ReLU-6 [-1, 64, 54, 54] 0

MaxPool2d-7 [-1, 64, 27, 27] 0

Conv2d-8 [-1, 128, 25, 25] 73,856

BatchNorm2d-9 [-1, 128, 25, 25] 256

ReLU-10 [-1, 128, 25, 25] 0

MaxPool2d-11 [-1, 128, 12, 12] 0

Conv2d-12 [-1, 128, 10, 10] 147,584

BatchNorm2d-13 [-1, 128, 10, 10] 256

ReLU-14 [-1, 128, 10, 10] 0

Dropout-15 [-1, 128, 10, 10] 0

Conv2d-16 [-1, nb class, 10, 10] 516

AdaptiveAvgPool2d-17 [-1, nb class, 1, 1] 0

Total params – 264 516

RW(100) and with the benefit of a fine-tuning.

In a next experiment, we consider a longer time series obtained through in-

terpolation of the initial data, to fill the 224 columns of the data representation.

Table 2 (bottom part) presents the classification results. All scores are increased

compared to those with less temporal information (Table 2, upper part). This can

be explained by the non-regular temporal distribution of the original images. Then

the weights associated with the temporal data are applied to information that are

not comparable. Whereas, with the linear interpolation, we make the temporal dis-

tribution regular to obtain 224 dates. The approach using scan(10) is less efficient

than those based on RW. All the obtained scores are in the same range and the

fine-tuning strategy shows the interest of a better initialization.

5.2. Comparison with other state-of-the-art systems

To evaluate the plus-value of the MS-STR approach, we compare the on-line classifi-

cation scores with state-of-the-art methods. We have then selected two comparative

methods. The first one is TempCNN16 where the convolutions are applied only in

the temporal domain (1D convolutions). The filter sizes are fixed following the cri-

terion given in16 with a kernel size of 5 when considering the original dates, and
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11 when considering the interpolated dates, as the size is depending on the tem-

poral size of the series. Note that the TempCNN model is proposed with different

architectures (depths of the network), leading to different numbers of filters. Then,

we have experimented several architectures in order to optimize the architecture

with respect to the data. We used the implementation of TempCNN provided by

the authorsd. The second method is a LSTM10 network which is a variety of RNN.

The used network is composed with 3 LSTM layers and a fully connected one as a

classifier. For a fair comparison purpose, we trained and validated these methods

using the same data and validation protocol than the ones used for our model.

Tables 3 reports the obtained results with TempCNN and LSTM respectively,

considering the time series with N = 50 and 224 dates. Best scores of TempCNN

are obtained considering 64 filters for short time series and 256 filters for longer

time series. Here also, the interpolated time series enable to improve the efficiency

of the system. LSTM provides worst score with the original temporal data (N = 50)

and it is increased with interpolated temporal information but always in the last

position. As possible reason to this disappointing result, we do not need, in our case,

to manage series with different lengths, and our features are not only depending

on time (spatio-temporal information). From this, we deduce that the considered

LSTM system is not adapted to the considered task.

Now we can compare these results with those we have presented previously. Two

contexts can be distinguished, when training from scratch and when considering a

fine-tuning process. When training from scratch, our best score (92.72) is better

than those obtained with TempCNN (81.81). When we use fine-tuning, we outper-

form them still more (97.27). We can notice that nearly all the scores obtained

with our MS-STR based method, even the not so good ones are higher (with and

without fine-tuning) than with TempCNN. Moreover, we can also notice our results

are more stable than with TempCNN as the standard deviations computed from

the five folds are divided by four. This highlights, for the context studied here, the

benefice of considering a classical 2D CNN model for classifying 2D + t images

combined with our spatio-temporal representations.

The obtained scores, thanks to our spatio-temporal representation, demonstrate

the impact of adding the spatial information in the classification task. In the follow-

ing, we study the impact of the architecture of the CNN considered in the learning

process to classify the segment representation and of course we also compare with

the competitive methods.

5.3. Impact of the choice of the CNN

The methodology (MS-STR) we have presented is based on the use of a 2D con-

volutional network. The network can be changed but the global architecture of the

system is not modified. In this study, we are interested in the impact of the CNN

dhttps://github.com/charlotte-pel/temporalCNN
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Table 5: Impact of the choice of the CNN for the classification task.

From scratch Fine-tuning

CNN OA STD OA STD #Params (↓)

MS-STR

VGG1622 92.42 2.14 97.87 7.42 134 268 738

AlexNet15 88.78 3.26 91.51 3.66 57 020 228

SqueezeNet9 92.12 3.76 96.66 0.60 723 522

Custom CNN 96.66 1.13 – 264 516

Others
TempCNN16 81.81 6.57 – 3 939 586

LSTM10 61.51 6.74 – 1 434 626

choice on the global results. One of our aim is to study the impact of the choice of

the CNN on the obtained results, in particular the number of network parameters.

To this end, we selected two CNN heavier than SqueezeNet and one lighter. There

are described hereinafter:

(1) SqueezeNet9 that is the network used in the previous studies whose results have

been commented previously;

(2) AlexNet15 and VGG1622 models, as representative CNNs used in various clas-

sification tasks;

(3) a custom CNN model composed with four blocks: 2D convolutions, a 2D batch

Normalization and ReLu activation function. The classifier is composed by a

dropout layer, a 2D convolution with the number of classes as output channels

number and a 2D adaptive average pooling layer to get the number of classes

values. The architecture is detailed in Table 4.

The comparison is done using the RW with length L = 100 and considering the

decision with Np corresponding to 50% of the area of the polygon. Results are

provided in Table 5, as well as the number of weights that have to be determined in

the learning phase. First we can see the four MS-STR systems provide better results

than when considering only time approaches (Others). In the cases where fine-

tunings from ImageNet were possible, we can observe the significant improvement

enabled by a fine-tuning strategy during the learning phase. But we also can notice

the same result can be obtained with a less deeper network with less weights to

be fixed. The results of these four MS-STR systems are quite disparate between

88% and 97% showing the efficiency of the methodology is depending both on

the architecture and on the computed features. However, training from scratch

CustomCNN requires a much larger number of epochs than fine-tuning VGG16 on

our data (with pre-training on ImageNet), with comparable scores.

5.4. Analysis of the convolutional filters learned by the CNN

The methodology proposed in Section 3.5 will be applied on the MS-STR method
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(a) Learned filters (1st CNN layer) (b) Synthetic images

(c) Energy ratios Rst of the 64 filters (d) Classification of the 64 filters
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Fig. 5: Importance of temporal vs. spatial features that are extracted with learned

filters from the first layer of the custom CNN.

using our custom CNN. This is motivated by the size of this smaller CNN. In

order to label the 64 filters of the first layer (illustrated in Figure 5(a)), the used

synthetic images, It and Is, are generated by alternating the white and black color

f times, where f is the number of color change. In our case, we chose f = 8. The

obtained It and Is images are illustrated respectively in Figure 5(b). When feeding

the CNN with these images, we compute the energy of each of the obtained 64

feature maps where one convolution and a ReLu process are applied. We notice

that the energy E is computed on the output of the first activation function on

the model (the output of the fourth layer in Table 4) in order to consider only the

most representative features. Then, we apply the formula 1 to obtain the different

ratios Rst. Figure 5(c) presents the graph figuring the ratios of energy Rst(k) with

respect to the kernel index k.

The identification of which filters are linked to temporal, spatial or spatio-

temporal variations is done by setting µ = ν = 0.1. To illustrate the classification of

the filters, a color is affected according to the conditions presented in Section 3.5,

we then obtain the 64-cells grid depicted in Figure 5(d). The red color refers to
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temporal filters, green refers to spatial filters and yellow to spatio-temporal filters.

From this grid, we notice that all the categories of filters have been learned in the

classification system built. Furthermore, the learned filters are well balanced in the

three sets, temporal, spatial and spatio-temporal filters. This enforces the impor-

tance to consider both spatial and temporal aspects, not only independently, but

also in a conjoint manner. Capturing such spatio-temporal information is actually

not feasible when the fusion of both aspects is done at the decision level of the

system.

We can then analyze which filters are more active according to the input images

of the CNN, in our case real spatio-temporal representations. We illustrate the

analysis with representations of three examples of crop-fields, an intensive orchard,

a traditional orchard and a meadow. The question that arises is what kind of filters

are the more active when analyzing the data? First the energy associated with the

images are computed in order to count the most active filters. In order to produce

significant results we have limited the counting to the 15 highest energies and we

produce a bar graph counting the number of filters in each category indicated

through the color. The study can be done at STR level or at the more semantical

level of crop field by averaging the histograms associated to the Np representations

of the MS-STR used in the decision making step.

The obtained results are illustrated in Figure 6(a,b,c). When comparing the

histograms of intensive and traditional orchards, we notice the use of spatial filters

is rather important either from the filters labeled as spatio-temporal or spatial. The

regularity of the rows of trees in intensive orchards is materialized by the larger

use of specific spatial filters. We have added in this experiment the results obtained

from a meadow that is characterized by the homogeneity of the spatial behavior

along the year and this is confirmed by the small use of spatial filters compared

to the importance of the temporal filters. This analysis shows that temporal in-

formation are very important in the classification problem we consider, but spatial

information are important too and justify the use of MS-STR method as well as

the improvements compared to temporal approaches.

6. Conclusion

In this article, we present a MS-STR method to classify an image time series based

on a spatio-temporal representation. This representation aims to reduce the struc-

ture of the data from 2D+ t to 2D without losing too much the spatial relationship

of pixels and the temporal one. Then, these new representation images are used to

feed any classical 2D CNN to perform a classification. With the proposed represen-

tation, the applied 2D convolutions lead to a spatio-temporal feature extraction. If

the methodology is convenient for any 2D CNN, our experiments show the archi-

tecture has to be chosen with respect to the problem, in the trend of many others

study the number of weights has to be as low as possible. The aggregation of the

different architectures may allow to get a decision, improving the confidence of the
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(a) Intensive orchard (b) Traditional orchard (c) Meadow

Fig. 6: Most active filters based on energy computation for the classification of three

examples of agricultural crops represented by MS-STR: (top) energies associated

to each filter response; (bottom) natures of the most used filters.

classification and also to produce more accurate results. By considering 2D convolu-

tions on this kind of images, we can also benefit of a pre-trained model, e.g. trained

on the ImageNet database on a similar classification problem. Such initialization of

the weights of the CNN is less tractable for 1D studies as no large public dataset,

at the scale of ImageNet, and pre-trained networks, are available. The analysis of

the trained filters shows the learned weights are linked to the temporal, spatial

and spatio-temporal information. Then, the method can be applied in any other

classification problem to get hint on the most important type of information.

As first perspective, we plan to generalize the filter analysis at different levels of

the CNN architecture. Besides, when considering weights pre-trained on ImageNet

(with purely spatial data), the way the low level filters may be transferred to deal

with spatio-temporal data, can be deeper investigated. Another perspective is to

involve our system in larger classification problems by considering more classes and

data. We can consider for example other applicative domains like video analysis

and indexation, where spatio-temporal information may be related to the speed of

shifts.
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group (Systèmes Intelligents de Perception) at LIPADE Lab. As a former student
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