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Abstract. Image time series, such as Satellite Image Time Series (SITS)
or MRI functional sequences in the medical domain, carry both spatial
and temporal information. In many applications such as image classi-
fication, taking into account such rich information may be crucial and
discrimative during the decision making stage. However, the extraction
of spatio-temporal features from image time series is difficult due to the
complex representation of the data cube. In this article, we present a
strategy based on Random Walk to build a novel segment-based repre-
sentation of the data, passing from a 2D+t dimension to a 2D one, more
easily manipulable and without loosing too much spatial information.
Such new representation is then used to feed a classical Convolutional
Neural Network (CNN) in order to learn spatio-temporal features with
only 2D convolutions and to classify image time series data for a partic-
ular classification problem. The interest of this approach is highlighted
on a remote sensing application for the classification and the mapping of
complex agricultural crops.

Keywords: Satellite Image Time Series, spatio-temporal features, Ran-
dom Walk, Convolutional Neural Networks.

1 Introduction

An image time series is an ordered set of images taken from the same scene at
different dates. Such data provide rich information with the temporal evolution of
the studied area. In remote sensing applications, many constellations of satellites
acquire images with a high spatial, spectral and temporal resolution around the
world leading to Satellite Image Time Series (SITS). For example, the Sentinel-2
sensors produce optical SITS with a revisit time of 5 days and a spatial resolution
of 10 – 20 meters.

SITS help understanding environmental evolution, studying the causes of
various changes, and predicting future evolution. Temporal information, inte-
grated with spectral and spatial dimensions, enables in particular the analysis
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of complex patterns related to applications related to land cover mapping (e.g.
agricultural zones, urban areas) or the identification of land use changes (e.g.
urbanization, deforestation) and the production of accurate land-cover maps of
a territory [11].

A major issue when analyzing image time series is to consider simultane-
ously the temporal and the spatial dimensions of the 2D + t data-cube. In this
context, methods for SITS analysis are actually mainly based on temporal infor-
mation [15] at the pixel level. But in some specific applications, this may not be
sufficient to get satisfactory results. Taking both temporal and spatial aspects
into account at the same time can, for example, make it easier to discriminate
between different complex land cover classes (e.g. agricultural practices, urban
vs. peri-urban areas). Note that here our objective is to map complex land-cover
classes prone to confusions when a single date image is used.

This article focuses on the problem of spatio-temporal features extraction
for the classification of image time series, using a deep learning strategy. In this
context, we define a novel spatio-temporal representation of image time series
that makes it possible to consider classical Convolutional Neural Network (CNN)
frameworks (proposed for the analysis of 2D images). Our main contribution is
the proposal of a transformation to represent 2D+ t data as 2D images without
loosing too much spatial information. It relies on the construction of sets of (1D)
segments using a Random Walk paradigm to decrease the spatial dimension of
the data. This new data representation is then used to feed a CNN in order:
(1) to learn spatio-temporal features with only 2D filters, involving at the same
time temporal and spatial information, and (2) to classify image time series data
according to a particular thematic problem.

The remainder of this article is organized as follow. Section 2 presents related
works for SITS analysis. Section 3 introduces the proposed representation of the
image time series for a CNN analysis. An experimental study, in the remote
sensing domain, focusing on the classification of agricultural crops is described
in Section 4. Section 5 discusses the obtained results. Finally, conclusion and
perspectives will be found in Section 6.

2 Related works on SITS analysis

SITS allow the observation of the Earth surface. Such data improves our knowl-
edge and understanding of environmental evolution and changes, which may be
of different types, origins and duration. For a detailed survey, see [5].

Pioneer methods processed single images from image stacks. On each image,
different measurements per pixel were considered as independent features and
involved in classical machine learning-based procedures. Methods designed for
bi-temporal analysis locate and study changes occurring between the two obser-
vations. These methods include image differencing [3], ratio-ing [13] or vector
change analysis [14].

Another family of methods are directly dedicated to the analysis of image
time series. Most of them are based on multi-date classification. Among them,
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Fig. 1. Flowchart of our method for image time series deep classification based on a
planar spatio-temporal data representation obtained from Random Walk based seg-
ments. (top) off-line (i.e. learning) phase and (bottom) on-line (i.e. testing) phase of
the classification process.

we find radiometric trajectory analysis [22]. These methods exploit the evolution
of land cover (e.g. seasons, vegetation evolution [20]), and take into account the
chronology by using dedicated time series analysis methods [2]. Every pixel is
considered as time ordered (and aligned) series of measurements, and the changes
of the measurements through time are analyzed to find (temporal) patterns,
using statistical or symbolic approaches.

Some methods first propose a new representation of the SITS into a new
space. We may cite “frequency-domain” approaches that include spectral anal-
ysis, wavelet analysis [1]. Other methods extract more discriminative “hand-
crafted” features from a new enriched space [4, 17, 18]. Concerning the classifi-
cation step, the classical approaches measure similarity between any incoming
sample (that can be enriched with the “hand-crafted” features) and the train-
ing set. They assign the label of the most similar class using e.g. the Euclidean
distance based on a nearest neighbor algorithm or / and the Dynamic Time
Wrapping method [16].

More recently, deep learning paradigms have been considered to classify re-
mote sensing images and generate land-cover maps. In general, Convolutional
Neural Networks (CNN) are used to deal with the spatial domain of the data
by applying 2D convolutions [8]. When dealing with image time series, convolu-
tions can be applied in the temporal domain [15]. Another type of deep learning
architecture that is designed for temporal data is Recurrent Neural Network
(RNN) such as Long-Short Term Memory (LSTM), used successfully in [10,19].
In this context, deep learning approaches outperform traditional classification
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algorithms such as Random Forest [12], but they do not directly take into ac-
count the spatial dimension of the data as they consider pixels in an independent
way. Some approaches have been proposed to consider both the temporal and
the spatial dimensions of the 2D+t data-cube [6]. A common strategy is to train
two models, one for spatial dimension and one for temporal dimension, then to
fuse their results at the decision level. In video analysis, spatio-temporal features
are learned directly using deep 3D convolutional networks [21] but such strategy
requires the learning of an huge number of parameters.

In this paper, our strategy is to classify a SITS using a classical 2D CNN
model, thanks to a new representation of image time series embedding simulta-
neously temporal and spatial information of the data-cube. We compare with the
use of 1D convolutions applied in the temporal domain [15] to classify temporal
pixels (which is the current state of the art).

3 Proposed method

The proposed method aims to classify image time series from spatio-temporal
features. The underlying strategy is to use a 2D input classical deep neural net-
work architecture in order to learn a spatio-temporal model from the 2D + t
data. Figure 1 illustrates the global workflow of our system, with the traditional
off-line (i.e. learning) and on-line (i.e. testing) phases of a classification process.
Since our system is dedicated to classification of objects of interest (e.g. agri-
cultural crops), the initial input data may be an image centered over a specific
object, an image patch, or only the connected pixels of a region of interest (ROI),
modeled as a polygon. In any case, we will use the term “image” for the input
data.

We manage to consider some 2D elements to perform the learning phase in
the off-line process. In this way we differ from other approaches considering a
1D structure [15] or a 3D one [21] as we find in the state-of-the-art methods.

We start by transforming the original 2D + t data into planar entity con-
taining spatio-temporal data built from 1D spatial segments over time. Such a
representation is then transferred as the input of a CNN to achieve a classifi-
cation of the segments that are built in off-line and used on-line. The network
can be trained in order to learn the labels from the spatial, as well as temporal
information contained in the data.

3.1 Data transformation

We first explain how to transform the original 2D + t data to less complex 2D
representations that contain spatio-temporal data built from 1D spatial seg-
ments.

From pixels to segments Traditional methods that only handle temporal infor-
mation consider the 2D domain as a set / bag of pixels, 0D entities. The pixels
are generally characterized by the temporal series of the pixel intensities. In our
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case, we include some spatial information, leading to the notion of segments
which are 1D spatial entities. An input image is then replaced by a set of 1D
segment entities, where L is the length of the segments included in the input
image.

In a 1D segment each pixel has 2 neighbors, except for the two extreme pixels.
Our transformation will then decrease the spatial information with keeping only
2 nearest neighbors.

Different strategies to define 1D segments in the original 2D space are here
studied and compared in this work. For each chosen strategy, we apply the
process Np times from an input data, producing Np different segments, in or-
der to keep enough neighbors; The pixel orders are then chosen following these
segments. In this way, the spatial representation complexity of the images is
decreased, from 2D to 1D segments.

Next, segments characterized by temporal information leading to 2D spatio-
temporal data are classified.

From segments to 2D representations For a given series composed of N images
(i.e. N temporal acquisitions), segments are first extracted. They are used for the
learning of the classification model. The segment pixels are spatially represented
by the pixel index within the segment. These 1D spatial segments will now be
enriched with temporal information to build 2D spatio-temporal data.

With each of the Np segments, we associate a 2D structure. In the abscissa
X axis, is considered the index of the pixel in the segment (from the initial
pixel) and in the ordinate Y axis is considered the evolution of the intensity of
the pixels over the time. This leads to a novel 2D representation composed of
N rows (N is the number of images in the SITS) in the temporal domain and L
columns (L is the length of the considered segment) in the spatial domain. This
image can then be interpreted as a partial spatio-temporal 2D representation of
the 2D + t image time series.

When applying the transformation process to the Np segments, we finally ob-
tain Np spatio-temporal 2D representations from the original image time series.
These representations will be used as input of a learning process, the segments
classes are the classes of the annotated input image they belong to.

3.2 Segment construction strategies

Two different strategies were considered to build segments:

– Scanning strategy (scan). Here we consider all the rows and columns in
the input image to build 1D segments. The dimensions of the input image
limit both the number and the lengths of possible segments. To guarantee
similar lengths L for each segment, it is needed to replicate the values on too
short segments (this may correspond to segments extracted from the borders
of the image. In this way, the pixels are considered only twice in the new
representation, and each pixel has only 4 neighbors.
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– Random Walk (RW) based segment. A Random Walk [7] is a mathe-
matical process based on a random iterative system. Each iteration is a step
with Markovian properties.
Here, the Random Walk is used to generate a random segment in a 2D image
space with length L, noted RW (L). The first point of the segment is chosen
randomly on the 2D image and for next point, 8 directions are possible.
Given an input image, we proceed to Np initializations of Np Random Walk
segments. For each one a 2D image is then built, where the rows correspond
to the pixel values of the pixels in the segment extracted from the different
images of the series. The chronology is related to the line number. The middle
of the on-line part of Figure 1 illustrates the spatio-temporal representations
from three different segments built from an input image.

3.3 CNN model (architecture)

Convolutional Neural Networks (CNN) refer to the family of deep learning algo-
rithms. Systems are composed of two parts. The first one is designed to feature
extraction, it has many neuron layers that compute the convolutions of the pre-
vious ones. The neurons of each layer are activated by non-linear functions (e.g.
sigmöıde, ReLU) in order to keep the most representative features (high order
features). We find also max-pooling layers between convolutional layers to re-
duce progressively the quantity of the inputs and the number of the parameters
to be computed to define the network, and hence to also control over-fitting.
The second part may be a classifier. Generally, it is a fully connected layer that
provides a probability vector, on which is plugged a softmax function to predict
the class label of input data.

We have chosen the SqueezeNet model [9] but any other 2D CNN model
can be used. SqueezeNet has interesting properties, few parameters, and same
accuracy level as the AlexNet model on the ImageNet dataset. The training
of the model is then faster. The architecture of SqueezeNet introduces a new
module called Fire composed of a squeeze layer using 1 × 1 convolution filters
followed by expand layer that contains a mix of 1 × 1 and 3 × 3 convolution
filters. Also, its classifier is based on a global average pooling over feature maps,
potentially decreasing the overfitting effect. We used the Pytorch implemen-
tation of SqueezeNet3. The CNN model is trained with the 2D spatio-temporal
representations obtained from each input image time series from the training
set.

3.4 Decision making at polygon level

As already mentioned, our input data are polygons representing objects of in-
terest in SITS. Each input data is associated with a set of Np segments, Np

is consequently a parameter of the method. With each segment is associated a

3 https://github.com/pytorch/vision/blob/master/torchvision/models/

squeezenet.py
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2D planar spatio-temporal representation. Thanks to the classifier described in
Section 3.3, a class label is predicted for each 2D spatio-temporal representation
(i.e. for each segment) with some probability. We proceed by taking average of
the returned probabilities by the model for the Np segments of the polygon and
we affect the class label with the highest probability ensuring a unique decision
per image.

4 Experimental study

The experimental study is focused on a remote sensing application, the clas-
sification of agricultural crop fields from a SITS. The goal is to discriminate
within agricultural thematic classes (e.g. traditional vs. intensive orchards). The
automatic identification of these classes is a complex task since orchards are
subject of many agricultural practices depending on the season and the territory
management policy. In order to differentiate these two classes, spatio-temporal
features carry useful information to discriminate the agricultural practices.

4.1 Material

We dispose of a SITS provided by the satellite Sentinel-2, it contains N = 50
optical images sensed in 2017 over the same geographical area (East of France
– tile 32ULU). Figure 2 displays the temporal distribution of the images of
this SITS. The images have been corrected and orthorectified by the French
Theia program4 to be radiometrically comparable. We also dispose of the cloud,
shadow and saturation masks associated with each image. A pre-processing step
was applied on the images with a linear interpolation on masked pixels to fill
the missing values in the SITS.

For each image, only three bands are kept which are near-infrared (Nir), red
(R) and green (G). The blue band (B) is considered as useless in the litera-
ture to discriminate different kinds of agricultural fields and is also sensitive to
atmospheric effects. All these bands have a spatial resolution of 10 meters.

Fig. 2. Distribution of the images from the SITS (2017).

The used reference data are extracted from the (freely distributed) RPG5,
which is the agricultural parcel delineations (in our context orchards). Some
examples of polygons are represented in Figure 1. These polygons have been

4 https://theia.cnes.fr/
5 http://professionnels.ign.fr/rpg
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corrected by photo-interpretation to ensure a good delimitation of the parcels.
The reference data used in our experiment are the semantic labels of these poly-
gons (traditional or intensive orchards). These polygons are leading to a new
time series of polygons, noted Polygon Image Time Series (PITS).

Table 1. Summary of the data; (first col.) Initial number of polygons per class; (two
last col.) Number of spatio-temporal segments depending on the segment construction
strategy.

Classes # polygons
# Spatio-temp. rep.

for scan
# Spatio-temp. rep.

for RW

Int. orchards 100 3084 3000
Trad. orchards 100 3059 3000

Total 200 6143 6000

4.2 Data preparation

First, PITS are formed, then we analyze the importance of the spatial relation-
ship of pixels, so Np segments are extracted from the ROI. According to the ROI
sizes, we set Np to 30 for the RW strategy. For the scan strategy, the number of
possible 1D segments depends on the ROI size. The average number of segments
for the scan strategy is 487 ± 110. In the off-line part of Figure 1, we illustrate
the transformation process of PITS with RW (10). Table 1 displays the number
of instances of polygons per class and the number of segments built from these
data according to the segment construction strategy.

In the following, we study the impact of the length L of the segments. This
enables to evaluate the impact of adding more spatial information to learn spatio-
temporal features instead of considering single 0D pixels, as this is the case in
most of the classical approaches. The used lengths L are 10, 50, 100 and 224. The
largest one depends on the maximum input size of the CNN SqueezeNet model.
When building the 224 × 224 2D image from the segments, if the segments are
less than 224, we center them horizontally and the rest of columns are fixed to
zero value. Table 1 indicates the actual number of segments.

For the temporal dimension (Y axis), we propose two strategies. The first
one is to center the original information from the N input images vertically
(N = 50). The remaining top and bottom lines are fixed to zero value. The
second one is to fill the 224 values by applying a linear interpolation in the STIS
on time information. We assume that the temporal information between two
consecutive dates is monotonic and linear. The interpolation is then done by
considering that we only have 224 days in the year so that one day is done with
about 39 hours. For the initial dates (begin of the year of 224), we affect the
temporal information of the first date in the SITS. For the last dates (end of the
year of the 224), we affect the last known temporal information in the SITS.
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The data normalization is a linear transform based on the maximum and
the minimum values of the dataset after values are limited with 2% (or 98%)
percentile, as proposed in [15].

(a) (b)

(c) (d)

Fig. 3. Training phase loss curves, according to the length L of Random Walk paths:
(a) L = 10; (b) L = 50; (c) L = 100 and (d) L = 224.

4.3 Learning and validation protocol

The experiments are validated using a five-fold cross validation strategy. Each
time, we split the dataset into three subsets at polygon level with sizes of 60%,
20% and 20% representing respectively training, validation and test sets. The
CNN model is then trained and evaluated five times at decision level. In the end,
we report the average overall accuracy (OA) of the five splits and indicate the
standard-deviation (STD).

The model is trained using Adam optimizer with a learning rate of 10−6 and
default values of the other parameters (β1 = 0.9, β2 = 0.999 and ε = 10−8) with
a batch size of 8. We limit the number of epochs to 2000, following an early
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stopping technique with a patience number of 100. The experiments are done on
a laptop machine with a Nvidia GPU model GTX 1050 Ti with Max-Q Design
(4GB).

According to the limited number of polygons, the training is operated with
two strategies. In the first one, the model is trained from scratch and in the
second one it is initialized with weights obtained with the ImageNet database
in a classification problem and then fine-tuned with our data.

5 Results and discussion

The proposed 2D spatio-temporal representations are used to feed the chosen
CNN. For the scan strategy, we just use the segment length L of 10 since we are
limited by the dimensions of the ROIs. At segment level, Figure 3 illustrates the
obtained loss curves when the model is trained from scratch with the different
lengths of the RW segments, respectively 10, 50, 100 and 224. We observe that
the training is done in the best conditions with the different lengths of the
Random Walk. In the loss curve of RW(10), we observe strong oscillations in
the curve which is not the case in others. This is potentially due to the lack of
information in the images provided to the CNN (a lot of zero –black– values in
the input image), and each time when increasing the length L, the validation
loss (orange curve) decreases leading to better learning rates.

The on-line classification results (overall accuracy) with spatio-temporal rep-
resentations (with original dates) are reported in Table 2. All the scores are in
the same range except the scan(10). Indeed, with the different lengths of the
Random Walk, we kept spatial information that allows to distinguish between
the two considered classes (traditional and intensive orchards). We notice that
with fine-tuning, all the scores are increased, with RW(224) in the first position.

The obtained results are compared to those obtained with the TempCNN
method [15]6. TempCNN is dedicated to the classification of time series, where
convolutions are applied in the temporal domain (1D convolutions). The filter
sizes are fixed following the criterion given in [15]: with a kernel size of 5 when
considering the original dates, and 11 when considering the interpolated dates.
For comparison purpose, we trained and validated the TempCNN model using
the same data and validation protocol than the one used for our model. Note
that the TempCNN model is proposed in [15] with different architectures (depths
of the network), leading to different numbers of filters.

Table 3 reports the obtained results with the TempCNN method. Best scores
were obtained with 256 filters. The best obtained score with our method (when
we train from scratch) is slightly better than those obtained with TempCNN.
However, when we use fine-tuning, we outperform them. This highlights, for our
applicative context, the benefit of considering a classical 2D CNN model for
classifying 2D + t images combined with our spatio-temporal representations.

Table 4 presents the classification results when considering the spatio-temporal
images with the temporal interpolation strategy. We remark that all the scores

6 https://github.com/charlotte-pel/temporalCNN



From pixels to RW based segments for image time series deep classif. 11

Table 2. Classification results (overall accuracy – OA and standard deviation – STD)
obtained with our spatio-temporal representations (with original temporal informa-
tion).

From scratch Fine-tuning

Lengths of the segments OA STD OA STD

scan(10) 73.00 9.27 80.50 5.09
RW(10) 85.50 5.56 90.50 5.78
RW(50) 80.00 7.27 92.00 2.91
RW(100) 84.50 5.33 94.00 2.00
RW(224) 86.00 5.61 92.50 4.18

Table 3. Classification results (overall accuracy – OA and standard deviation – STD)
with the different architectures of TempCNN [15] (with original dates and kernel size
of 5).

Nb filters 16 32 64 128 256 512 1024

OA 78.81 77.38 81.66 78.45 85.37 81.73 84.80
STD 6.08 6.51 4.59 4.79 3.44 5.75 6.48

are increased compared to those with less temporal information (Table 2). This
is explained by the non-regular temporal distribution of the original images. So
with the linear interpolation, we make the temporal distribution regular to ob-
tain 224 dates. scan(10) is always less efficient than those that are based on RW.
All the obtained scores are in the same rank with RW(100) in the first position
with and without fine-tuning.

Table 5 reports scores when classifying with TempCNN [15] with more tem-
poral data. The overall accuracy is slightly increased compared to the previous
one (Table 3) and the best result is obtained with 1024 filters. The scores ob-
tained with our method are higher (with and without fine-tuning) than with
TempCNN.

Table 4. Classification results (overall accuracy – OA and standard deviation – STD)
obtained with our spatio-temporal representations (with temporal interpolation).

From scratch Fine-tuning

Lengths of the segments OA STD OA STD

scan(10) 78.50 6.44 83.00 1.87
RW(10) 90.00 4.18 93.00 4.30
RW(50) 90.50 1.87 93.00 2.44
RW(100) 93.50 2.00 93.00 2.44
RW(224) 91.50 1.22 91.00 2.00
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Table 5. Obtained results (overall accuracy – OA and standard deviation – STD) with
the different architectures of TempCNN [15] (with temporal interpolation and kernel
size of 11).

Nb filters 16 32 64 128 256 512 1024

OA 78.96 81.40 83.96 81.86 85.93 84.23 87.21
STD 7.34 6.32 7.14 5.18 8.03 6.23 8.28

6 Conclusion

In this article, we present a new method to classify an image time series based on
a spatio-temporal representation. This representation aims to reduce the struc-
ture of the data from 2D + t to 2D without loosing too much the spatial rela-
tionship of pixels and the temporal one. Then, these new representations images
are used to feed a classical CNN to perform a classification. With the proposed
representation, the applied 2D convolutions lead to a spatio-temporal features
extraction. The trained filters have weights linked to the temporal evolution and
others linked to spatial evolution, finally, the combination of both carry infor-
mation on spatio-temporal evolution. By considering 2D convolutions on this
kind of images, we can also benefit of a pre-trained model, e.g. trained on the
ImageNet database on a similar classification problem. Such initialization of the
weights of the CNN is less tractable for 1D studies as no large public dataset,
at the scale of ImageNet, and pre-trained networks, are available.
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