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Abstract. Satellite Image Time Series (SITS) provide valuable informa-
tion for the study of the Earth’s surface. In particular, this information
may improve the comprehension, the understanding and the mapping
of many phenomenons such as earthquake monitoring, urban sprawling
or agricultural practices. In this article, we propose a method to de-
fine new spatio-temporal features from SITS based on the measure of
the temporal stability. The proposed method is based on a compression
algorithm named Run Length Encoding leading to a novel image repre-
sentation from which stability features can be measured. Such features
can then be used in several applications such as SITS summarizing, to
make easier the interpretation of such a data-cube, or the classification of
spatio-temporal patterns. The preliminary results obtained from a series
of 50 Sentinel-2 optical images highlight the interest of our approach in
a remote sensing application.

Keywords: Satellite Image Time Series (SITS), spatio-temporal fea-
tures, Run Length Encoding, temporal stability, Sentinel-2.

1 Introduction

Image time series, such as Satellite Image Time Series (SITS) or MRI functional
sequences in the medical domain consist of ordered sets of images taken from
the same scene at different dates. Such data provide rich information with the
temporal evolution of the studied areas. In the context of remote sensing, SITS
provide enormous amounts of information that allow the monitoring of the sur-
face of our planet. Recently new constellations of satellites have been launched
to observe our territories, producing optical images with high spatial, spectral
and temporal resolution. For example, the Sentinel-2 sensors provide SITS with
a revisit time of 5 days and a spatial resolution of 10 — 20 meters.

One of the major applications of SITS is the cartography / mapping of land
covers (e.g. agricultural crops, urban areas) and the identification of land use
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changes (e.g. urbanization, deforestation). The availability of the temporal in-
formation makes possible to understand the evolution of our territory while
analyzing complex patterns leading to produce or update accurate land cover
maps of a particular area [11].

A main challenge for the automation of SITS analysis is to consider at the
same time both the temporal and the spatial domains of the data-cube in order to
take into account and benefit from all the (complementary) information carried
by the data. Indeed, most of the existing methods for SITS analysis are actually
solely based on temporal information [18,19]. However, for many complex tasks
such as the understanding of heterogeneous agricultural practices, this may be
not sufficient to get satisfactory results. The consideration of spatio-temporal
features from SITS should allow the discrimination between different complex
land cover classes, related to agricultural and urban land-cover practices. Note
that we do not aim here to produce temporal land-cover maps or to study land
use changes (e.g. urbanization) but our objective is to analyze complex land-
cover classes prone to confusions when a single date image is used.

This article focuses on the specific problem of spatio-temporal features ex-
traction from image time series that can be used for different applications. For
example, such information may be used to summarize a SITS, improving the
difficult photo-interpretation of the sensed scenes from a set of many images ac-
quired at different dates, or for classification of different regions of interest into
thematic classes (e.g. agricultural crops, vegetation, urban). Our contribution
relies on spatio-temporal features that are based on the measure of the spatio-
temporal stability of a zone, using a compression algorithm named Run Length
Encoding. By compressing a data-cube with this strategy, we obtain a novel
SITS representation from which stability features can be measured.

This article is organized as follow. Section 2 recalls some existing methods
for SITS analysis. Section 3 presents our proposal to extract spatio-temporal
features. Section 4 describes the experimental study while Section 5 concludes.

2 Related works

SITS allows the observation of the Earth surface and the understanding of the
evolution of our environment, where various changes can occur over the time
(e.g. following natural disasters, urbanization, agricultural practices). Such en-
vironmental changes may be of different types, origins and duration [6].

Pioneer methods for SITS analysis take into account single images or stacks
of images. Those that consider each image, compute different measurements per
pixel as independent features and involve them in classical machine learning-
based procedures. In such approaches, the date of the measurements is often
ignored in the feature space. Methods designed for bi-temporal analysis, can
locate and study abrupt changes occurring between two observations. These
methods include image differencing [4], ratio-ing [13] or change vector analysis
[14]. We also find statistical methods that consider two or more images, such as
linear transformation (PCA and MAF) [16,17].
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More recent methods were designed to directly deal with the specificity of
image time series. This category of methods includes multi-date classification
approaches, such as radiometric trajectory analysis [25], or sequential patterns
techniques that group pixels that share common temporal pattern [15]. The latter
strategy exploits the notion that land cover can vary through time (e.g. because
of seasons, vegetation evolution [24]), and related methods take into account the
order of measurements by using dedicated time series analysis methods [3]. Every
pixel is viewed as a temporally ordered series of measurements, and the changes
of the measurements through time are analyzed to find (temporal) patterns.

Other type of methods start by transforming the original representation of
the SITS into a new one. For example, the analysis can be operated in the
“frequency-domain” that includes spectral analysis or wavelet analysis [2]. Con-
cerning the classification methods, the classical way is to measure similarity
between any incoming sample and the training set and then to assign the label
of the most similar class. Other methods extract more discriminative “hand-
crafted” features from a new enriched space [20,22] before using the classifier.

Recently, deep learning approaches have been employed to analyze satellite
images. For example, convolutional neural networks (CNN) can be applied with
2D convolutions to deal with the spatial domain [9]. CNNs have been also applied
successfully to perform SITS classification; in this case 1D convolutions dealing
only with the temporal domain [18] have been proposed. Other architectures
of deep learning that is designed for time series are recurrent neural network
(RNN) such as Long-Short Term Memory (LSTM), used successfully in [10,23].
In this context, deep learning approaches outperform traditional classifications
algorithm as Random Forest [12], but they do not directly take into account
the spatial dimension of the data as they consider pixels in an independent way.
Although, some approaches have been proposed to consider both the temporal
and the spatial dimensions of the 2D + ¢ data-cube [7], the expressiveness of the
underlying convolutional features is difficult to use for the interpretation of the
content of the sensed scenes.

In this article, we propose an approach to define a set of spatio-temporal
features from an image time series. Such spatio-temporal features can be used
for different needs, for example to summarize a SITS, in order to improve and to
make easier the scene interpretation, or to enrich the feature space, increasing
the separability of complex land-cover classes in a classification task. The pro-
posed approach measures the stability of a zone based on a lossless compression
algorithm, here the Run Length Encoding (RLE) [8]. The notion of temporal
stability has been initially proposed in a previous article [5]. In the following,
we extend this strategy to now measure the spatio-temporal stability of an area,
by relaxing both temporal and spatial constraints when assessing the equality
between consecutive pixels through the time.
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Fig. 1. Compression of a temporal pixel p with a Run Length Encoding (RLE).

3 Proposed method

The proposed method aims to analyze the spatio-temporal stability or change
of image pixels from a SITS. The spatio-temporal features are based on the
measure of the spatio-temporal stability of a zone, using a compression algo-
rithm, namely Run Length Encoding (RLE) algorithm, leading to a novel image
representation from which stability features can be measured. In this Section,
we first explain how the stability can be measured in the datacube induced by
the SITS data. Since the notion of stability involves the study of the repetition
of successive values, the notion of equality and its application level enable to
relax both temporal and / or spatial constraints, leading to the definition of
spatio-temporal features.

3.1 Stability measurement

The stability is based on the repetition of the successive values. In the literature,
different methods have been proposed to measure this information. In our case,
we choose a compression method named Run Length Encoding (RLE) [8] that
was already used for time series analysis in [1,21]. RLE is a lossless compression
algorithm. It allows the compression of a vector v of length L by storing both
the number of times a value is repeated successively and its value. In our case
we only consider the first information and omit the value. The resulting vector
is noted RLE(v) with length . Figure 1 illustrates the computation of the RLE
on a temporal pixel p.

In the following, a SITS is noted (I;);e1,r) where ¢ is the date of acquisi-
tion for each image I. The computation of the RLE is applied on a temporal
pixel, noted p(z,y) = (p¢(x,y))r,, with z € [I,W] and y € [1, H], W and H
representing respectively the width and the height of the images.

Our strategy here is to employ the RLE to change the representation of the
SITS into a less voluminous structure, where stability information can be more
easily measured. In this context, we define three features that can be extracted
from this new representation for a given temporal pixel p:

— The Maximal Stability (noted MS) feature captures the longest period
where the pixel intensity stays stable (i.e. without change) through the time
series. It is expressed in term of number of days of the year. Such a feature
value can be computed as:

MS(p) = | RLE(p)[l (1)
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— The Max Stability Start (noted MSS) corresponds to the beginning of
the maximum stability period of a pixel through time. Such information
is then directly related to the Maximal Stability (M .S). This feature can be
informative / discriminative for different specific tasks, for example the max-
imum stability in artificialized areas (e.g. built-up area, impervious surfaces)
starts earlier than in non-artificial zones since they do not change over time.
The MSS feature value can be defined as:

to—1

MSS(p) = (Z RLE(:D%) with to / RLE(p);, = MS(p)  (2)

— The Number of changes (noted NB) corresponds to the number of sta-
bility ranges, linked to the number of changes in the area covered by the
studied temporal pixel. Such a feature value can be computed as:

NB(p) =1y 3)

The computation of RLE is based on the analysis of the equality between
successive values. However, the images composing a SITS are not acquired at the
same time. Although the images are generally corrected, the variability of the
pixel intensity values can be important along the series since the distributions
of the pixel values are not in the same dynamic from an image to another. This
may be a consequence of the seasons and the different illumination conditions.
To deal with this issue, the notion of equality has to be carefully studied in
order to evaluate, in a more realistic manner, if two successive (temporal) pixel
intensity values can be considered as equal or not.

3.2 Notion of equality

The equality is a binary equivalence relation that compares two objects of a
same set E. They are considered as identical if a given predicate P holds:

¢ ExFE— Bool
True if P(o1,09) (4)
01, 02 = {False else

When a SITS is considered, the pixel values being either continuous or dis-
crete in interval such as [0,255] or hypercube when vectorial values are consid-
ered, the equality of values is not always significant. Then, to fix this problem,
we start by applying a quantization of the pixel values. The quantization must
not be applied to each image I;, nor at temporal pixel p, it has to be done at
a global level of all the pixels of the data-cube (I;);. The quantization could be
regular, fixed with respect of the usual distribution of the values or it can be
adapted to the image series, to the nature of the characteristic used.

In order to perform the quantization, we apply a clustering algorithm that
enables to define the significant intervals. In our case a k-Means algorithm,
Equanti- being a parameter of the method, is used and different values have been
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experimented according to the precision needed in our problem. Then, the pixel
values are replaced by the cluster label belonging to {1,2, ..., kquanti- } defining
anew STIS (J;)seq,77- The RLE is then actually applied on (J;); pixels. In this
way, we define the predicate P by the strict equality between the objects, as
P(01,02) = (01 = 02).

3.3 Towards spatio-temporal stability

The features presented in Section 3.1 are defined for a temporal pixel and they
can be naturally considered as temporal features. Since our strategy relies on
the compression ability of the RLE, we also suppose that the data are as clean
as possible. But with satellite images, this may not be always the case. Some
images from the series can be affected by noise (e.g. salt and pepper, undetected
clouds) and a SITS can be potentially affected by registration problems from
one image to another. In this case, the RLE may not reflect the reality of the
content of the sensed scene along time. To handle this, we are going to relax the
equality definition in the temporal and / or the spatial domains, leading to an
approximation of the RLE, noted EITE‘, that can absorb these different noises.
It is no longer a lossless compression scheme.

The RLE computation is mainly based on the notion of “runs”, computed
over a sequence, a run being a sub-sequence composed of successive (identical)
repeated values. In the classical RLE, the predicate P is the one defined previ-
ously, leading to a “hard” equality relation. To compute the approximation of
the RLE, the strategy here is to compute approximated runs over the sequence
by relaxing the predicate P, used to estimate tll(_ejquality between successive
values. Of course the aim is to favor the shortest RLFE, that is to say, the longest
runs that are assumed to be resumed by a single value. Then it is no more pos-
sible to have a linear process of the series but, recursively, the longest runs on
the main series and on the sub-series when some parts of the series are already
compressed.

We first define several ways to consider that a sub-series is “constant” and
to compute an approximated run. This will be done through the relaxation of
the predicate P in the temporal domain, in the spatial domain and finally in the
spatio-temporal domain.

Let us note s = (8o, 1, 82, ..., Sn) & series. Our goal here is to compute the
length of the longest run in this series, starting from sq:

— Temporal relaxation The first possibility is to relax the temporal domain.
When ¢ > 1, we define a new predicate as:

temp __

Py (si=50) V (Sit1 = s0) (5)

where V represents the logical or. This predicate makes it possible to skip a
time value when comparing two consecutive elements of the series, according
to the value of sq.
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— Spatial relaxation When we relax the spatial domain, the pixel value at
instant sp is compared with the next value in ¢ + 1 and its neighbors in a
square window (a patch), which provides a certain spatial flexibility during
the comparison. With this strategy, we can avoid noise (e.g. salt and pepper)
and potential problems of image registration disturbing the comparison.
With the series s we associate the series of the neighbor of each s;, sN =
(Nsg,Nsi,Nsa,...,Ns,) and we define a new predicate as:

peratio — g0 e Ns; (6)

S,1

— Spatio-temporal relaxation A comparison completely relaxed is extracted
by combining both spatial and temporal relaxations. This spatio-temporal
relaxation relaxation is obtained with:

spatio—temp __ pspatio temp
Ps,i - Ps,i N Ps,i (7)

Given these predicates, we can now compute the length of the longest run of
the series, starting from sg. We first define a function c as

C: B — Z
1 if
ol i o

0 otherwise

The length of the longest run (noted LR) can then be computed (using ¢ to
build a counter) as:

LR(s)zm;?x{kE 1,n—1] :ZC(P;i)zk} + 1 (9)

i=1

where Py, is one of the relaxed predicates mentioned above.

Algorithmic aspects Now that we know how to compute an approximated
run beginning at a specific position, we can compute RLE.

Let us consider a temporal pixel p(x,y) = (pi(x,y)); of a SITS, noted p
hereinafter. We note p; the sub-series of p beginning in p; and we have

LR(p) = max LR(p;) and ilr(p) = argmax LR(p;) (10)
t

with élr(p) providing the position (index) of the starting point of the longest

run of p. To compute all the runs composing RLE, we implemented a greedy
optimization algorithm that works as follows. The function to optimize is to
obtain a RLE whose number of elements is the smallest possible. We thgn_/select
the longest run using Equation 10, keep it as an element of the final RLE, and
then re-apply this process, recursively (using a divide-and-conquer paradigm),
to the left and to the right of the selected run, until we have considered all the
temporal values of the pixel.
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Fig. 2. Different ways for calculating an approximated Run Length Encoding (E[\//E)
by considering different relaxation strategies. (Top) equality with temporal relaxation;
(Center) equality with spatial relaxation; (Bottom) equality with spatio-temporal re-
laxation.

The fundamental relation of the recursive process can be written:

if p=(p))_, with V¢, p; =c then Eﬁ?(p) =T (11)

RLE(p) = (RLE(pr - pitr(p)LE®) (RLE(its gy i) - -p7)) - (12)

By considering these different relaxation strategies, we can obtain several
approximations of the RLE for one temporal pixel p, noted Iﬁtemp when
considering the temporal relaxation, }ﬁsmtw when considering the spatial re-
laxation, and ]ﬁspatw,temp when considering the spatio-temporal relaxation.
Figure 2 illustrates the results of RLE with the different relaxation strategies.
From these novel representations, the stability characteristics (Maximal Stabil-

ity — M S, Max Stability Start — M SS and Number of changes — NB) can be
computed leading to different versions of spatio-temporal features.

3.4 Stability summarization

After extracting the three proposed features, following the hard equality strategy
or a relaxed one, they can be used to summarize the SITS by combining them
into one false color image, noted T'S. The color composition of the summary
image is following: M S in the red channel (R); NB in the green channel (G)
and M SS in the blue channel (B).

In this way, instead of analyzing the whole series of images, we will only
analyze a single image that summarizes all the SITS. The combination of the
summary can be applied for the classical RLE (without relation) and for each

approximated RLE , we note respectively T'S (from the classical RLE), T'S¢ermp,
T Sspatio and T'Spatio—temp (from the RLE) the resulting summary images.
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Fig. 3. Temporal distribution (over 2017) of the 7" = 50 images from the SITS.

4 Experimental study

The proposed method has been employed in a remote sensing application related
to the analysis of land-cover from a SITS. In this experimental study, we want to
highlight the ability of our features to capture and to summarize spatio-temporal
(stability) patterns, that cannot be handled using a single image of the SITS, the
summary may be useful to assist in understanding and interpreting a terrestrial
sensed scene. The experimental study is divided into two parts. In the first
part, we apply the proposed method on a SITS in order to summarize it and
to visualize the obtained results. In the second part, we involved the proposed
spatio-temporal features in a binary classification task for the analysis of urban
land-cover thematic classes.

4.1 Materials

The data used in this experimental study is an optical SITS composed of T' = 50
images. The images, provided by the satellite Sentinel-2, have been sensed in 2017
over the same gegraphical area, East of France. The acquired images have been
corrected and orthorectified by the French Theia program?® to be radiometrically
comparable. The images are distributed with their associated cloud, shadow and
saturation masks. A pre-processing step was applied on the images with a linear
interpolation on masked pixels to guarantee same size of all images of the time
series. Figure 3 displays the temporal distribution of the images belonging to
this SITS and Figure 5(a) depicts two geographical areas (Strasbourg (top) and
Mulhouse (bottom)) extracted from the SITS. Each image crop has a dimension
of 10002 pixels and is composed of 4 spectral bands (Nir, R, G, B) at 10 meters.

4.2 Stability summarization for land-cover analysis

In the context of our thematic study related to land-cover analysis, we chose to
consider a remote sensing index, the NDVI, instead of considering all the four
spectral bands. Indeed, the NDVTI index is widely used in remote sensing studies
to analyze land-cover from SITS since it is sensitive to the amount of vegetation.
The NDVI is simply built as the multi-spectral product based on the Nir and
R bands, leading to a SITS of NDVI, noted I}NPVI,

Then, according to our quantification strategy explained in Section 3.2, the
SITS of NDVI is quantified leading to JNPVI. In this context, we set empir-
ically kquantiz= = 4. The proposed spatio-temporal features are then computed
from JNPVI. The extracted features are finally combined, leading to false color

% https://theia.cnes.fr/
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Fig. 4. Illustration of the data and results in three different geographical areas: (a)
Image of the SITS at date 2017-08-26; (b) Result of the average of the SITS of NDVI
INDPVI. (¢),(d),(e) and (f) Obtained results of the proposed approach with the different
relaxations, related respectively to T'S, T'Stemp, T Sspatio and T'Sspatio—temp-

images, as explained in Section 3.4, which summarize the SITS of 50 images into
unique images T'S, T'Stemp, T Sspatio and T'Sspatio—temp- Concerning the spatial
relaxations (Equation 6), in the predicate to relax the spatial constraints, we set
the spatial neighbor of a pixel to its N = 9 nearest neighbors.

In a comparative study, we considered as a baseline, a summarization of
the STIS that consists, for each pixel of the original SITS INPV! to average
(through time) the values of the temporal pixels to obtain a single scalar value
of NDVL This (naive) baseline is noted INPVI.

Figure 4 presents the data of three different geographical regions sensed by
the SITS and the obtained results: the two first lines are focused in agricultural
areas and the third one is focused on a peri-urban area. The column (a) presents
one original image of a SITS at date 2017-08-26, (b) presents the obtained results
of the baseline summarization INPV! and (c),(d),(e),(f) are the results of the
four proposed summarizations without / with the different relaxations presented,
respectively T'S, T'Stemp, T'Sspatio and T'Sspatio—temp-

We remark that with I]NPVI the intensity of pixels in urban areas is very
dark because the NDVI intensity increases in vegetation areas and decreases
in other areas. In the agricultural areas, we visualize that we have about two
noticeable gray levels that means that two types of grounds are present.

The obtained images with the proposed method allow a better visualization
between all the thematic classes. The pixel colors are linked to the pixel evolu-
tion through time and a priori is a label of classes. The red color means that the
region stays stable during a long time (high MS) with few changes (small NB)
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and its stability starts early in the year (low M SS), as illustrated in the third
row in Figure 4. The green color means that the region changes a lot through
time with small MS and M SS. Such observations can easily allow a user, like
a geographer, to better (and more conveniently) interpret the observed terri-
tories, by considering only a single image instead of an entire series, such an
image capturing spatio-temporal phenomena like this may be the case for agri-
cultural environments (seasons, different sowing or agricultural practices) and
urban environments (constantly subject to various changes related to land-uses).

When comparing the results obtained with the different relaxations, we notice
that with T'Sgpatio and T'Sspatio—temp, roads, paths, parcel delineations are more
easily visible between agricultural fields and in the urban environments. This
can be surprising because when considering the traditional version of the RLE
and the resulting T'S image, these linear zones are not very visible, but the
latter are elements normally showing a great temporal stability. It means that,
when we relax the spatial domain with T'Sspatio and T'Sspatio—temp, We have the
possibility to escape to the problem of image registration and we optimize the
results by reducing noise (e.g. the salt and pepper). We notice that here there is
only small differences between TS and T'Stcrmp-

4.3 Classification of SITS with spatio-temporal stability features

In the second experiment, we involved the proposed spatio-temporal features in
a binary classification task, for the analysis of urban land-cover thematic classes.

Reference data In addition to the SITS, we dispose of an imperviousness
product that represents the percentage of the soil sealing. The imperviousness
product is a result of a project of the European Copernicus program?* released by
the European Environment Agency. This product defines the impermeability of
materials such as the urban areas (e.g. building, commercial zone, parking) and
is provided at pixel level. The spatial resolution of this product is 20 meters but
we re-sampled it at 10 meters to fit with the spatial resolution of the Sentinel-2
images. Each pixel value in this reference data estimates a degree of impervious-
ness (0-100%). In this thematical study, we used this product to discriminate
between the natural areas (0% imperviousness) and artificialized areas (imper-
viousness > 0%). Figure 5(b) illustrates the imperviousness reference data for
two specific geographic areas. Given a SITS, the task is then to predict for each
temporal pixel a binary label (i.e. artificialized vs. natural area).

Classification task Our goal is to conduct a classification in order to analyze
the urban land-cover using the proposed stability features. We assume they
capture in very few variables the information contained in the temporal cube. We
are going to evaluate the performance of these features (M S, MSS and NB,
so 3 values), alone and in complement to the raw material, i.e. the temporal

4 https://land.copernicus.eu/
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Fig. 5. Illustration of the data and results in two different geographical areas: (a) Image
of the SITS at date 2017-08-26: (top) Strasbourg area and (bottom) Mulhouse area;
(b) Imperviousness reference data: (red) artificialized areas and (yellow) natural areas);
(c) Binary classification results from the T'S features combined with time series.

pixels characterized by the NDVI values (T + 3 = 53 values). The influence of
the different relaxation strategies introduced previously will be also studied.

In order to make a comparative study, we will also consider two sets of data,
where the pixels to be classified are characterized differently: (1) the pixels are
characterized by their NDVI time series, noted time series (50 values since
T = 50 dates) and (2) the pixels are characterized by the mean of each time
series, noted time series (1 value) — in the same way as in Section 4.2.

According to the considered input size for each pixel (TS values (< 3) or
time series values (> 50)), we have chosen to use a Decision Tree (DT) and
a Random Forest (RF) for this classification task. The decision tree used is
(C4.5. The Random Forest classifier contains 30 trees. Each one is constructed
by splitting nodes until we get pure ones. The used criterion to do the split is the
classical “Gini”. We also compared our approach with the use of a convolutional
neural network, TempCNN [18]. The convolutions are applied in the temporal
domain, the input of the CNN is the NDVI time series (50 values).

The global process is to learn the two-class pixel classifiers on one geograph-
ical area and to test the classifier on a different area. Here, the Strasbourg and
Mulhouse areas are concerned. This leads to two experiments, one learning on
Strasbourg area and testing on Mulhouse area (Experience 1), the other one, on
learning on Mulhouse and testing on Strasbourg (Experience 2).
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Table 1. Results for the two classification experiments (overall accuracy — OA).

Classifier Features Input size Exp. 1 Exp. 2
RF time series 50 84.56 84.02
DT time series 1 66.40 67.49
CNN TempCNN [18] 50 84.26  86.05
DT TS 3 72.40  71.58
DT T Stemp 3 76.01 79.03
DT T'Sspatio 3 83.17  85.18
DT T Sspatio—temp 3 83.33  85.44
RF time series+TS 53 84.58 84.15
RF time series+T1 Stemp 53 84.56 84.07
RF time series+T Sspatio 53 85.85 86.23
RF time series+T Sspatio—temp 53 85.65 86.65

Results The evaluations provided in Table 1 and illustrated in Figure 6 is done
by computing the overall accuracy (OA) on all pixels of the test city areas.

Table 1 reports the obtained results with the different features. First we can
notice that using all the time series gives much better results than when only
the mean value is used time series. We can also see that the use of the three
features T'S we have extracted from the time series provides much better results
even if they are lower than when using the all time series. Besides we see the
improvement brought by the relaxation processes proposed. The resulting spatio-
temporal features enable to omit some punctual outlier values or to get rid of
the registration problems we saw occurring on the different geographical limits.
When processing T'S features combined with time series, the accuracy scores are
increased. The spatio and the spatio-temporal features give significantly higher
results. We can also notice the TempCCN method [18], despite a longer learning
phase, does not present better results than ours based on time series+7'Sspatio
or time series+T Sspatio—temp i this thematical study. Figure 5(c) illustrates
the visual classification results from the two experiments, by combining the T7'S
features with time series.

Figure 6 enables to visualize the improvement that is globally brought using
the stability features. They introduce non linear processing that is difficult to
model without using recurrent studies of the time series, a temporal filtering
window is often a parameter depending on the series content. As a whole, we
have decreased the error rate of the initial classifier by about 10%.

5 Conclusion

We propose in this article an approach to define spatio-temporal features from
SITS, based on a measure of the temporal stability. The proposal is based on
a compression algorithm named Run Length Encoding (RLE), applied on the
image data-cube, leading to a novel image representation from which stability
features can be measured. Since the notion of stability involves the study of
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Fig. 6. Boxplot of the experiments, related to the results from Table 1.

the repetition of successive values, we also study the notion of equality and its
application level. One of our contribution relies on the definition of novel approx-
imated versions of the RLE, by relaxing both temporal or spatial constraints in
the predicates involved in the equality definition. From these new versions of
RLE, we then proposed the definition of spatio-temporal stability features.

All the proposed features can be used in several applications such as SITS
summarizing, to make easier the interpretation of the sensed territories from
the original data-cube, or the classification of spatio-temporal patterns for land-
cover analysis. The preliminary results obtained from a series of 50 Sentinel-2
images highlight the interest of our approach in a remote sensing application.

We plan to pursue our work on the notion of equality, used to decide if a
pixel value is stable through time. As a limit of our work, we currently compute
our spatio-temporal representation and the proposed features from mono-valued
data, i.e. the temporal pixels characterized by the NDVI, that is a single scalar
value. When the characteristic is vectorial, for instance all the spectral bands or
a combination of remote sensing indexes, it is possible to try novel definitions
of the equality, leading to a more or less constrained equality definition. Such
vectorial approach is more suited when the considered scalar characteristics are
independent, that is not yet the case with those involved in our application.
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