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A B S T R A C T

Image time series (ITS) represent complex 3D (2D+t in practice) data that are now daily produced in various
domains, from medical imaging to remote sensing. They contain rich spatio-temporal information allowing the
observation of the evolution of a sensed scene over time. In this work, we focus on the classification task of ITS,
as often available in remote sensing tasks. An underlying problem here is to consider jointly the spatial and
the temporal dimensions of the data. We present Deep-STaR, a method to learn such features from ITS data to
proceed to their classification. Instead of reasoning in the original 2D+t space, we investigate novel 2D planar
data representations, containing both temporal and spatial information. Such representations are a novel way
to structure the ITS, compatible with deep learning architectures. They are used to feed a convolutional neural
network to learn spatio-temporal features with 2D convolutions, leading ultimately to classification decision. To
enhance the explainability of the results, we also propose a post-hoc attention mechanism, enabled by this new
approach, providing a semantic map giving some insights for the taken decision. Deep-STaR is evaluated on a
remote sensing application, for the classification of agricultural crops from satellite ITS. The results highlight
the benefice of this method, compared to the literature, and its interest to make easier the interpretation of
ITS to understand spatio-temporal phenomena.
. Introduction

The multiplicity of sensors, coupled with the society appetites
e.g., industrial, scientific, leisure) in image content, leads to the pro-
uction of mass of visual data. They have to be processed, analyzed,
nderstood automatically for indexing or classification purposes. In
ome cases, this visual data are 3𝐷 (2𝐷 + 𝑡 in practice) data when the
ensors produce images of a scene at different times.

Such data sources are varied and many applications could benefit
rom them. In remote sensing, optical satellite sensors image certain
egions every week. These data are used for environmental studies
r land-cover mapping. For example, the Sentinel-2 Earth Observa-
ion satellite constellation provides image sequences over the same
eographical area with high spatial, spectral and temporal resolutions
round the globe (Drusch et al., 2012). In medicine, radiology imaging
evices are used to follow each month the evolution of a pathology in
patient for longitudinal studies (Madhyastha et al., 2018). In biology,
camera fixed on a microscope can be employed to analyze the cell

evelopments (Stuurman and Vale, 2016), etc.
The produced 2𝐷+𝑡 data carry rich spatial and temporal information

hat must be taken into account to understand particular phenomena
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not being observable from a single image of the sequence (e.g., vege-
tation seasonal development from satellite images, tumor remission in
medicine) (Ren et al., 2009; Sumpter and Bulpitt, 2000; Weng et al.,
2019).

Whether considering a stack of images or a video, we will denote
these 2𝐷+ 𝑡 data as Image Time Series (ITS) in the following. An ITS is
basically a set of images of the same scene, ordered chronologically.
It can be encoded as a data-cube, two spatial and one temporal di-
mensions. The acquisition of an ITS can be done with one or multiple
sensors to obtain a larger data series with a high temporal frequency.

In this work, we consider a classification task where, given an ITS
representing a scene or a particular object, a class label potentially
linked to an evolution along time, has to be predicted. In addition,
depending on the scene, moving objects or deformable content can be
represented.

The analysis of an ITS generally requires the extraction, from image
pixels, of visual features as discriminating as possible. In the literature,
some approaches focus rather on the temporal aspect. They consider
an ITS as a set of independent pixels characterized with their time
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series (i.e., 1𝐷 temporal pixels) and classified individually. In a super-
vised classification scheme, this has the advantage of providing many
learning examples to train a model. The spatial aspect of data is then
totally ignored. Nevertheless, in various applications, this aspect is
necessary to discriminate certain complex classes. The joint study of the
spatial and temporal domains may allow a finer analysis and a better
understanding of some phenomena which can characterize the studied
objects of interest and their evolution. In this context, some approaches
combine spatial and temporal features. Often, the two domains are pro-
cessed independently and a fusion is operated for the decision. There
are also approaches that directly take into account spatio-temporal
features calculated from the data-cube, e.g., convolutional features
btained from a 3𝐷 Deep Neural Network (DNN). Such features are
hen natively spatio-temporal but training such models is expensive.

The problem studied in this article is the extraction of spatio-
emporal features from ITS and their involvement in a deep classifi-
ation procedure. Our methodological contribution is twofold:

• we propose Deep-STaR, a method dedicated to ITS classification.
We investigate novel planar representations of the 2𝐷+𝑡 ITS data,
involving both temporal and spatial information. The original
2𝐷 spatial dimension of the ITS is embedded in a 1𝐷 structure
trying to preserve the pixels spatial configuration. Such 1𝐷 spatial
structure is coupled with the 1𝐷 original temporal domain of the
ITS in a 2𝐷 (planar) spatio-temporal representation, leading to a
novel way to structure the ITS, making easier calculus and inter-
pretation. This new representation is used to feed a Convolutional
Neural Network (CNN) to learn spatio-temporal features, resulting
ultimately to classification decisions;

• we investigate an attention mechanism, integrated in our system,
providing a semantic map explaining the decision. The main
originality is to embed the attention information in the original
ITS dimensions. This constitutes a plus value regarding the state-
of-the-art since attention was mainly studied in the spatial or
temporal domains.

The remainder of this article is organized as follows. Section 2
ntroduces some related works. In Section 3, we present the Deep-
TaR method: firstly, the proposed 2𝐷 spatio-temporal representations,
econdly, the proposed attention mechanism. Sections 4 and 5 present
n experimental study in remote sensing and a discussion of the results,
oupled with a comparative study. Finally, conclusion and perspectives
ill be found in Section 6.

. Related works for ITS analysis

Numerous approaches exist in the literature for ITS analysis. De-
ending on the task and the application field (e.g., remote sensing,
edical imaging, video analysis). We focus here on the features and

he adopted point of view (i.e., dimension). We distinguish three groups
f approaches, presented hereinafter: (1) those treating ITS as a set of
ixel time series, (2) those integrating spatial information in the anal-
sis, and (3) those exploiting more directly spatio-temporal features.

.1. ITS as pixel time series

Pioneer methods from the literature processed each image from the
TS, without considering the temporal information. Various colorimet-
ic features were extracted at pixel level, image by image, in supervised
achine learning-based procedures. In parallel, a lot of researches

n the 90’s, especially by the remote sensing community, addressed
atellite Image Time Series (SITS). The need to consider temporal
nformation quickly appeared to study various types of changes and
he evolution of the observed territories (Coppin et al., 2004).

Some methods consider only two images sensed at different dates.
hey study the transitions (e.g., abrupt changes) between two obser-
ations, using for example image differencing (Bruzzone and Prieto,
2

000) or rationing (Jensen, 1981). The change is then located by
hresholding or classification. When several images are considered, the
rocess is repeated for all succeeding couples of images.

Other methods consider all the images in the ITS. Some are based
n a multi-date classification approach, such as radiometric trajectory
nalysis (Verbesselt et al., 2010). Another approach proceeds at pixel
evel by analyzing their evolution through time (Bagnall et al., 2017).
ere, each pixel is viewed as a set of measurements ordered chronolog-

cally (i.e., temporal pixel), and symbolic or statistical strategies have
een proposed to analyze such patterns (Méger et al., 2019).

New representation spaces can be also considered for the anal-
sis. The most well-known is ‘‘frequency-domain’’, such as Fourier
ransform or wavelet decomposition of the radiometric time series,
nvolving auto-correlation and cross-correlation analysis (Andres et al.,
994). These methods require a regular temporal sampling. Besides,

‘hand-crafted’’ representation spaces defined by discriminative tempo-
al features for classification task are proposed. The authors in (Chelali
t al., 2019) propose temporal stability features from the image time
eries. The notion of temporal SIFT was proposed in (Bailly et al.,
015) to extract a compact set of features from temporal pixels. Finally,
re available all the features processing 1𝐷 time-series such as when
rocessing biomedical signals, financial data, industrial devices, etc.

The classification task is then applied in this new space (‘‘hand-
rafted’’ features from the temporal pixels) where classical approaches
ely on similarity and on a training set. Similarity can be computed
y different metrics such as an Euclidean distance or a Dynamic Time
rapping (Petitjean et al., 2012a) measure. For example, nearest neigh-

or algorithm coupled with one of these metrics is used to assign the
abel of the most similar class.

Few years ago, DNN methods were employed for classification of
emporal pixels. Two main families of DNN are generally considered:
onvolutional Neural Networks (CNNs) and Recurrent Neural Networks
RNNs). Initially, CNNs were conceived to analyze 2𝐷 images where
onvolutions deal only with spatial domain (Huang et al., 2018). They
ere adapted to time series. For example, the TempCNN architecture
as been proposed for SITS classification (Pelletier et al., 2019) using
𝐷 convolutions applied in the temporal domain. Classical CNNs, such
s ResNet, have also been adapted for time series (Ismail Fawaz et al.,
019).

Another strategy is to encode the 1𝐷 time series into 2𝐷 represen-
ations, allowing then the use of a 2𝐷 CNN. For example, recurrence
lots or the Gramian Angular Field (Wang and Oates, 2015) or the
se of Short Time Fourier Transform to ensure the analysis of a signal
arying through time (Nisar et al., 2016). Such strategies enable to
enefit from powerful 2𝐷 CNN models, pre-trained on computer vision
asks (Russakovsky et al., 2015).

Concerning RNNs, the most popular is Long-Short Term Memory
LSTM) used successfully in (Ienco et al., 2017) for Earth observation
pplications. Researches show that DNN approaches for time series
lassification outperform the classical ones, such as Random Forest (Is-
ail Fawaz et al., 2019).

While these DNN-based approaches offer promising results, they
onsider (temporal) pixels independently, and generally neglect the
mage spatial dimensions. However, in certain applications, it is crucial
o also consider the spatial aspect of the 2𝐷 + 𝑡 data to discriminate

accurately complex classes.

2.2. Adding spatial information to characterize temporal pixels

To address the limitations mentioned above, some researches inte-
grated spatial information. The common idea is to characterize the 1𝐷
emporal pixels, not only with colorimetric or statistical information
ollected on each date, but also with spatial information collected in
he pixels neighborhood.

Various strategies were proposed to integrate spatial information to
emporal pixels. In (Petitjean et al., 2012b), an image segmentation
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Fig. 1. Deep-STaR method relying on spatio-temporal planar representations.
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f each image of the ITS enables to enrich a temporal pixel with
nformation calculated in the regions it belongs to along the time axis.
ifferent measurements are extracted from these regions: colorimetric,
orphological, or even geometrical (Correa et al., 2020) or mean of

emporal patterns as proposed in (Ravikumar and Devi, 2014).
Morphological attribute profiles and pyramids of pixel-based spatial

eatures have also been considered to enrich temporal pixels with
patial information, generally for change detection tasks (Falco et al.,
013). Another approach relies on the Histogram of Oriented Gradient
HOG) considered to capture contextual information for pedestrian
etection and tracking in videos (Barbu, 2014). Each image of the
TS can be also processed using 2𝐷 CNNs to extract convolutional

features that are stacked and passed to a classifier to operate a global
classification of the data-cube (Tran et al., 2018).

In the context of agricultural crop-fields classification from SITS,
the authors of (Sainte Fare Garnot et al., 2020) recently proposed an
hybrid strategy relying on DNN. First, sub-sets of pixels are considered
randomly from the crop-fields images. A spatial encoding operator,
inspired from 3𝐷 point cloud processing, enables a network to learn
first order statistical descriptors of the data spectral distribution. They
are considered as spatial features in the model but neighborhood
information is ignored. Such features are then combined with temporal
features extracted using a neural architecture based on self-attention,
to ultimately produce a classification result.

These approaches make it possible to combine spatial informa-
tion with temporal information, but such features are not natively
spatio-temporal.

2.3. Spatio-temporal features

Spatio-temporal features denote features that are computed by in-
volving simultaneously the spatial and the temporal domains of an
ITS.

Depending on the considered tasks, numerous ‘‘hand-crafted’’
spatio-temporal features in video analysis were investigated such as 3𝐷
SIFT (Scovanner et al., 2007), texture features, or based on motion with
optical-flow strategies, etc. Most of research about such features were
done in video analysis for action recognition, detection of video copies,
which mostly made use of such features.

DNN-based approaches have been considered for learning spatio-
temporal features (Atluri et al., 2018). In (Chandra et al., 2018),
authors consider the spatial and the temporal domains separately,
training two models, one on each domain, with an aggregation at
the decision level. Authors of (Di Mauro et al., 2017) propose to
use 1𝐷 CNN in the temporal domain. Then some spatial features are
computed, such as the mean of pixels within a radius at each time,
and are combined with the temporal features. Since the approach
considers the pixel coordinates as spatial features, final results are
visually rather smooth. Other strategies use a network with both 1𝐷
and 3𝐷 convolutions alternating (Stoian et al., 2019). Note that deep
spatio-temporal features are classically learned in a supervised fashion
but auto-encoders architectures can also be considered (Goroshin et al.,

2015).

3

Eventually, 3𝐷 convolutions can be directly employed to deal with
he spatial and temporal domains simultaneously (Tran et al., 2015).
3𝐷 convolutional auto-encoder is proposed in (Kalinicheva et al.,

020) for segmentation purpose. In (Tran et al., 2018), spatio-temporal
onvolutions for video analysis are studied. Their conclusions demon-
trate the accuracy advantages of 3𝐷 CNNs over 2𝐷 CNNs applied
o individual frames of the video for action recognition purpose. The
uthors of (Feichtenhofer et al., 2017) propose a two-stream networks,
ne trained on RGB video and the second on motion video (optical
low). These networks are linked with residual connections in order
o learn the interaction between appearance and motion. This strategy
s well adapted for scenes with deformations and motions, but less
ompetitive on (non-deformable) static scenes. We find also the DuPLO
ethod (Interdonato et al., 2019) that applies 2D convolutions on

n image that is built as a multi-band input considering as many
ands as the length of the time series. If such features are natively
patio-temporal, training such models remains expensive. Furthermore,
odels with millions of parameters such as 3𝐷 CNNs can lead to

olutions difficult to interpret, in particular with 2𝐷 + 𝑡 data.

.4. Understanding CNN decision to improve ITS analysis

Generally, CNN models are trained and are more active on some
arts of images or signals, according to the input. CNN are known as
lack boxes, due to their lack of interpretability. Indeed, millions of
arameters are learned, in particular with large architectures dedicated
o 2𝐷 + 𝑡 or 3𝐷 data analysis.

In this context, different attention mechanisms strategies were in-
roduced. One of them is trainable attention mechanism helping the
odels to focus on some parts of the input during the training (Jetley

t al., 2018). However, this requires the modification of the model
rchitecture. This can be tricky when using classical pre-trained archi-
ectures. There are also post-hoc attention mechanism that introduces
he notion of Class Activation Map (CAM) (Zhou et al., 2016), highlight-
ng the most important image parts for the model to take the decision.
ote that CAM is only employable with models having a Global Av-
rage Pooling (GAP) layer before the softmax classifier (Zhou et al.,
016). CAM are optimized by using a guided back-propagation and
re compatible with CNN models ending with a fully connected layer,
ee e.g., GradCAM and GradCAM++(Chattopadhyay et al., 2018). The
otion of CAM is also used when considering temporal convolutions of
ime series (Fawaz et al., 2019).

When dealing with ITS, attention-based approaches have also been
roposed (Xu et al., 2020). Very often, the attention is captured in-
ependently in the spatial and temporal domains and then combined.
hus, it does not enable to improve directly the understanding of
patio-temporal phenomena in the 2𝐷 + 𝑡 data, leading to the decision
f the network.

.5. Motivations

In this article, we focus on spatio-temporal features learning using
NN for ITS classification. As discussed in the previous sub-sections,
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a lot of studies consider only temporal aspect. Considering an ITS as
a bag of independent pixel time series, the studies benefit from large
sets of samples for supervised learning procedures. On the opposite,
complex 3𝐷 CNN methods learn (native) spatio-temporal features but
such approaches need a huge database to fix all the parameters and
they can lead to solutions difficult to interpret.

In our case, we want to benefit from the advantages of both ap-
proaches: a large number of training entities for learning and both
spatial and temporal information from the original 2𝐷+ 𝑡 data-cube. To
this end, we propose an ITS classification method based on novel spatio-
temporal representations embedding both temporal and spatial infor-
mation in a 2𝐷 image structure. Such representations allow a classical
2𝐷 CNN to learn 2𝐷 filter weights extracting (native) spatio-temporal
features for the ITS classification.

Based on our previous work (Chelali et al., 2020), where we pro-
posed only a global 2𝐷 representation of the data, we introduce here
a new local strategy. This is an original methodology that makes it
possible to increase the number of representations associated with the
ITS and to control it, deeply improving the model learning step. We also
propose a novel post-hoc attention mechanism, providing a semantic
map, whose originality is to embed attention information in the original
ITS 2𝐷 + 𝑡 space to better understand the CNN decision.

3. Deep-STaR: ITS analysis from spatio-temporal representations

This section presents the methodological foundation of the proposed
Deep-STaR method for 2𝐷 + 𝑡 image time series to predict a semantic
(class) label from an input ITS. Fig. 1 illustrates the workflow of
Deep-STaR.

The ITS can be either a (rectangular) patch representing a complete
scene (see left of Fig. 1), or only a region of interest (ROI), a connected
set of pixels in the image domain (see Fig. 7). We assume that all pixels
of the patch/ROI share the same label. In the following, we will use the
term ‘‘image’’ and ITS to refer to such input data.

The core of Deep-STaR is based on the concept of spatio-temporal
planar representations. Rather than the original ITS 2𝐷 + 𝑡 space, we
investigate novel 2𝐷 planar representations containing both temporal
and spatial information. The original 2𝐷 spatial dimension of the ITS is
transformed to a 1𝐷 space using different strategies (which can operate
at local or global level) trying to preserve the spatial configuration
by partially maintaining the neighborhood of the pixels. This novel
1𝐷 spatial dimension is combined with the original 1𝐷 temporal di-
mension of the ITS, leading to a 2𝐷 spatio-temporal representation.
Such representation can be considered as a novel way to structure
the ITS, making easier its manipulation and also its interpretation.
This new kind of representation feeds a classical 2𝐷 Convolutional
Neural Network (CNN) which learns spatio-temporal features with 2𝐷
convolutions, leading ultimately to classification decision.

After providing notations (Section 3.1), Section 3.2 deals with the
construction of the planar representations. Then, Section 3.3 describes
the different entities that are used to transform the 2𝐷 + 𝑡 data-cube
into 2𝐷 structures.

Sections 3.4 and 3.5 present the CNN architecture and the decision
making process for the ITS labeling. Finally, Section 3.6 presents an-
other contribution relying on a post-hoc attention mechanism to better
understand the decision taken thanks to the proposed system.

3.1. Notations

In the following, an ITS is represented as a tuple (𝐼𝑛)𝑛∈J1,𝑁K of
images, 𝑛 is the acquisition date of image 𝐼𝑛. An image 𝐼 is a function
associating an integer couple (𝑥, 𝑦) ∈  (i.e., a pixel) with its intensity
(represented by one or more radiometric values). The (common) spatial
domain of the images is  = [0,𝐻 − 1] × [0,𝑊 − 1] where 𝑊 and
𝐻 represent respectively the width and the height of the images. We
assume here that all images in the series are registered, and a pixel

covers the same scene surface at all dates. R

4

Fig. 2. 2𝐷 image transformation to a 1𝐷 pixel array: (left) A curve 𝛤 in the spatial
mage domain ; (right) Representation of 𝛤 in a 1𝐷 structure of length 𝐿 = 8, the

pixels are indexed according to their curvilinear abscissa.

3.2. Planar representation construction

Before dealing with the 2𝐷 + 𝑡 data, we start by defining how to
ransform 2𝐷 images into 1𝐷 arrays of pixels.

Given an image 𝐼 , the spatial information is figured by neighboring
ixels. A pixel in a 2𝐷 space or in a region has (in general) 4 or 8 nearest
eighbors directly connected according to the considered topology.
his makes a spatial context. In order to simplify the complexity of
he 2𝐷 structure, the idea is to limit the pixel neighbors in a 1𝐷
tructure with length 𝐿, bringing partial local spatial information. In
rder to keep statistically significant information, we select curves
here pixels have 2 neighbors except curve extremities, ensuring an

sotropic exploration of the space. Then, a 1𝐷 structure is defined by
ndexing pixels according to their curvilinear abscissa within the curve.
oing so, in each curve, spatial information is decreased as a pixel
ill have only 2 neighbors among the 8 possible ones. Note that our
bjective is to preserve as much as possible the spatial information.

The way we consider the ITS is based on the way we are looking at
n image, i.e., the entities we are focusing on. Here, we focus on curves
rawn in the 2𝐷 image, it can be a more of less short curve or a curve
hat fills the whole image domain, making possible both local or global
ata investigations.

Let us consider a curve 𝛤 in the spatial image domain . We
ote the curve pixels 𝑃𝑗 ; they are indexed by their curvilinear abscissa
nitiated at one of the curve extremity. Then, 𝛤 is represented by
he tuple

(

𝑃1,… , 𝑃𝐿
)

, where 𝐿 is the length of the 1𝐷 structure. At
his stage, the curve 𝛤 embedded in the 2𝐷 space is such, naturally
epresented in a 1𝐷 structure, i.e., a string of pixels. Fig. 2 illustrates
his strategy.

The next step is to handle 2𝐷 + 𝑡 data. The curve 𝛤 defined in the
mage support  has occurrences in all the 𝑁 images of the ITS. Then,
he 𝑁 tuples 𝑃 = {

(

𝑃 𝑖
1,… , 𝑃 𝑖

𝐿
)

}𝑁𝑖=1 (one tuple per date) are stacked as
ows in a 2𝐷 array, interpreted as a new image; such image is called a
patio-Temporal Representation (STR). The STR size is 𝑁 × 𝐿. 𝑁 , the
eight refers to the temporal aspect (the number of images in the ITS),
the width refers to the spatial aspect (the curve pixel index). Finally,

he new 2𝐷 image represents a planar representation of the 2𝐷 + 𝑡
TS. Note that if the pixels 𝑃𝑗 in the original ITS were characterized
y multiple radiometric values (i.e., multivalued images), then the STR
s a multivalued 2𝐷 image.

We will present different strategies to draw curves in the image
omain, at a local or a global level, associating different sets of tuples
ith an ITS.

.3. Curves carrying significant spatial information

The main purpose is to introduce spatial information when building
planar spatio-temporal representation. Different curves in the image

lane are possible, either at local level (see Section 3.3.1), leading
o a Multi-Segment Spatio Temporal Representation (MS-STR), or at
lobal level (see Section 3.3.2), leading to a Global Spatio Temporal

epresentation (G-STR).
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Fig. 3. Random Walk segments and enrichment of pixel time series with spatial
information: (a) RW segments (one color per segment) built in the spatial domain
 of the image (the starting points of the segments are materialized with dots); (b) An
example of a temporal pixel (i.e., pixel time series) versus a spatially enriched temporal
ixel in ITS.

.3.1. Local point of view: Random walk strategy
As supervised learning procedures often require a large dataset for

raining, a local (pixel) point of view can be adopted in order to enrich
ixel time series with spatial information. Such local strategy has the
dvantage of making numerous different entities from an ITS.

Technically, the idea is to extract several (1𝐷) curve segments
from the image plane, capturing local spatial information through a
limited number of pixels belonging to the ROI and building ITS planar
representations as explained previously. The way segments are built is
now introduced.

Random Walk segments (RW): The goal is to pass from single
pixels to segments. Here, we propose to build curve segments by a
Random Walk (RW) process. RW is a mathematical model to build a
path from random iterative steps with Markovian properties. The RW
segment with length 𝐿 is noted 𝑅𝑊 (𝐿). The first point of the curve is
initialized randomly. 8 directions are possible for choosing next point
except if a pixel is next to the region border. Fig. 3 presents some
examples of 𝑅𝑊 (𝐿) with different 𝐿 values and how pixel time series
can be enriched with spatial information.

Depending on the starting points of the curves and thanks to the
randomness of the process, 𝑁𝑠𝑒𝑔 representations can be built, sharing
the same label. They model the ITS, leading to a Multi-Segment Spatio
Temporal Representation (MS-STR). 𝑁𝑠𝑒𝑔 is then a parameter enabling
to control the number of different representations of a ROI.

3.3.2. Global point of view: space filling curves
Unlike previously, here we propose a global view of the image

domain  leading to a Global Spatio Temporal Representation (G-STR).
For this, a curve filling the whole plane is considered. In the literature,
many strategies exist to index image pixels; among them, (Nguyen
et al., 2012) proposes to use space filling curves passing through all the
pixels of a square 2𝐷 plane only once. The most important property of
space filling curves is locality preserving. Two adjacent pixels in the
curve are neighboring pixels in the plane.

Pixels indexed initially by (𝑥, 𝑦) can be indexed by only one integer
value 𝑗. Let a function ℜ be dedicated to this transformation:

ℜ ∶  → [0, (𝑊 − 1) × (𝐻 − 1)]
(𝑥, 𝑦) ↦ 𝑗 = ℜ(𝑥, 𝑦)

(1)

Different space-filling curves exist. Each one has its proper strategy
to keep statistically representative neighbors without bias. Here, we
choose and compare experimentally different curves described below:

• Snake curve (ℜ𝑠𝑛𝑎𝑘𝑒): this curve scans the plane lines, as a snake
(see Fig. 4(a)). To preserve the spatial relationship, lines are
linked, the heads of even lines are linked with ends of odd ones,
and vice versa;

• Spiral curve (ℜ𝑠𝑝𝑖𝑟𝑎𝑙): this curve is based on Archimedean spiral
that fills the 2𝐷 square plane, as illustrated in Fig. 4(b). The
square center is the curve first point. Then, the curve revolves

around; o

5

Fig. 4. Space-filling curves transforming a 2𝐷 image in a 1𝐷 pixel string.

• Hilbert curve (ℜ𝐻𝑖𝑙𝑏𝑒𝑟𝑡): this curve is a fractal space-filling curve
(Butz, 1971). The construction of the curve is based on a recurrent
process applied on a square domain. The domain is divided into
four equal squares. The four small squares are linked in such a
way that ‘‘two parts with a common edge have two consecutive
indexes’’. This rule is applied recursively on squares with power of
2 as width. Fig. 4(c) illustrates the three first orders of the process.

Once the 2𝐷 spatial domain is transformed to 1𝐷 structures (local
r global strategy), temporal information can be added as described in
ection 3.2, leading to the final planar STR images (MS-STR or G-STR).
ext step is to train a model exploiting these representations in a deep
rchitecture.

.4. CNN architecture for STR labeling

Generally, CNNs are involved in end-to-end methods to analyze
he visual aspect of images. Their architectures differ. But the main
rocess is to pass an input through the network. It starts by a succession
f layers involving convolution operations followed by an activation
unction (e.g., sigmoïde, ReLU) to select only the high order features
rom the input. Another layer, max-pooling, is an operation to reduce
he quantity of the inputs for next layers. Finally, in classification
ystems we find fully connected layers, that have the same principle
s a multi-layer perceptron, followed by a softmax function to get the
redicted probabilities of the classes.

Our method is based on a 2𝐷 CNN to learn and extract spatio-
emporal features with 2𝐷 convolutions. Our choice comes to
queezeNet (Iandola et al., 2016) but it can be changed with any other
𝐷 CNN. SqueezeNet is a rather small network leading to the same
ccuracy level as AlexNet when evaluated on the ImageNet dataset.

Fire layer is introduced in the model. It applies 1 × 1 convolution
ollowed by two expand layers, one applies 1 × 1 convolution and the
econd 3 × 3 convolution. The network is the concatenation of the
revious expand layers. Inputs of the SqueezeNet are 224 × 224 images.

The STR (local or global) are used as inputs to train the CNN. Each
TR has the label of the ITS it belongs to. The learning can use the data
vailable but can also benefit from transfer learning strategies. Here, as
e are using image data, the computed weights on the ImageNet dataset

lassification task can be fine-tuned with our STR images.

.5. Decision making

The decision making process is relatively similar for both local or
lobal approaches. In the local approach, many curves can be extracted
rom the ITS domain (i.e., a MS-STR contains 𝑁𝑠𝑒𝑔 STR). In the global
ne, only specific 2𝐷 representations are associated with the ITS. In any
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Fig. 5. Temporal attention in MS-STR approach: (a) RW segments (a dot materializes starting point); (b) Saliency maps of 𝑁𝑝 STR (colored attention values); (c) Temporal attention
rofiles; (d) Thresholded profiles; (e) Mask 𝑀 for global temporal attention.
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ase, the CNN provides as output a class probability vector for each
TR input. For the local strategy, for each ITS to be classified, 𝑁𝑠𝑒𝑔
robability vectors are obtained.

In both cases, the final decision for the ITS is taken by averaging
he returned probabilities given by the CNN classifier applied to the
vailable STR modeling the ITS. State-of-the-art methods focusing on
he temporal domain generally provide decision at temporal pixel level,
.e., one decision per pixel, and then average the final results to get a
nique decision per ROI. We apply the same strategy to get a single
ecision per ITS.

With the classification, we propose a visual understanding of the
aken decision using an attention mechanism to analyze more deeply
he learned spatio-temporal features, and to justify the taken decision.

.6. Attention mechanism

The decision depends on the most active reception fields. Thanks
o the learned weights, a CNN computes features. For example, we can
ind a pedestrian or a car in an image but both can be found and, as a by
roduct result, a segmentation is built by the CNN. In this context, the
se of a Class Activation Map (CAM) strategy leads to a saliency map
roviding a visualization of which image parts contribute the most to
ach label.

In our experimental study, we classified a ROI using a CNN but
ithout more detailed analysis. The identification of the agricultural

lasses depends on the vegetation cycles (because of the seasons) and
lso from the farmers’ management of the parcels by adding fertilizer,
owing some parts of parcel or only using a part from the parcel.
dding to the classification task, the proposed planar representation

s used to identify the influence of the temporal and the spatial aspects
hat are respectively figured along the height and the width of the
mage.

We provide hereinafter a method for studying temporal and spatial
ttentions from the (STR) planar spatio-temporal representations.

.6.1. Temporal attention
Using temporal information, we assume the temporal evolution is

eaningful to discriminate between the different classes. Some ques-
ions may occur: What is the most discriminative temporal moment?
s it necessary to study the ITS on the whole available period? Finally,
an the results be improved by considering a specific period?

We assume that time stamp is identical for all the samples used
n the training, and that all spatial areas may contribute in the same
ay to the decision. The STR input to the CNN has in the abscissa
6

nformation from a spatial point of view and in the ordinates from a
emporal point of view. Then, to focus on temporal attention, we will
onsider the vertical axis.

For each STR image, the GradCAM++ (Chattopadhyay et al., 2018)
trategy leads to a saliency map 𝑆𝑐 for a class 𝑐 ∈ [1, 𝐶]. The saliency

map can also be viewed as a 𝑁 × 𝐿 attention image (see Fig. 5(a,b)).
Let us note 𝑆𝑐

𝑖,𝑗 the attention at date 𝑖 ∈ [1, 𝑁] (row) and pixel 𝑗 ∈ [1, 𝐿]
(column) in 𝑆𝑐 . By accumulating values on the rows in 𝑆𝑐 , we obtain
a temporal attention vector with size 𝑁 , noted 𝑋. Each element of the
temporal attention vector is defined as:

𝑋𝑖(𝑆𝑇𝑅) =
𝐿
∑

𝑗=1
𝑆𝑐(𝑆𝑇𝑅)
𝑖,𝑗 (2)

where 𝑋𝑖 is the 𝑖th coordinate of vector 𝑋 and 𝑋(𝑆𝑇𝑅) is the temporal
attention vector associated with STR image. We remind that 𝑆𝑐 is
obtained for one class 𝑐. In our case, 𝑆 is computed only once for
predicted class of the STR image. Fig. 5(c) illustrates the obtained
temporal attention vectors for a STR. From the analysis of all the
vectors associated with the learning elements, we can select the most
discriminant temporal range for the CNN. This is done by applying
a thresholding 𝐴 to embed the 𝑋 vectors in {0, 1}𝑁 giving 𝐴𝑋 hard
vectors. The high values in 𝑋 are those with 1 in 𝐴𝑋 and inversely.
The Otsu method is used for 𝐴, illustrated in Fig. 5(d).

We can then build a mask 𝑀 that represents the global tempo-
ral range enabling the discrimination between classes. It is based on
the 𝐴𝑋 vectors. Within each class, we compute the component wise
product of the 𝐴𝑋𝑘. This highlights the most significant times for the
classification of this class (see Fig. 5(e)). To classify the C classes,
instead of studying the time series on the whole period, the period can
be shorten, considering only the times where at least one (𝐴𝑋𝑐 )𝑖 equals
1 as:

𝑀 = (𝑀𝑖)𝑖 =

⎧

⎪

⎨

⎪

⎩

1 if ∃𝑘 ∈ [1, 𝐶]
∏

𝑆𝑇𝑅∕𝑐(𝑆𝑇𝑅)=𝑘
𝐴𝑋𝑐(𝑆𝑇𝑅)

𝑖 = 1

0 otherwise
(3)

3.6.2. Spatial attention
The saliency map 𝑆𝑐 highlights regions on the spatio-temporal

representation image domain, that contribute more to the decision
taking. We present now a method enabling to highlight the interesting
spatial information in the original 2𝐷 image domain  of the ITS.

In a STR, the horizontal axis carries the spatial information. In a
similar way as for temporal attention, for each pixel we consider its

𝑐
column in the saliency map 𝑆 , but instead of averaging, we consider
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Fig. 6. Spatial attention in MS-STR approach: (a) RW segments (a dot materializes starting point); (b) Saliency maps of the 𝑁𝑝 STR (attention values are colored); (c) retro-projection
f the attention values in the image domain ; (d) resulting semantic map. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
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he time where the pixel is the most attractive for class 𝑐 and define
ector 𝑌 as:
𝑐
𝑗 = 𝑌 𝑐

(𝑥,𝑦) =
𝑁

max
𝑖=1

𝑆𝑐
𝑖,𝑗 (4)

here 𝑌 𝑐
𝑗 is the attention associated with pixel of index 𝑗 in the STR

mage and of coordinates (𝑥, 𝑦) ∈  in the original image domain.
Of course, the retro-projection process cannot be the same when

lobal or local methodologies are applied for building the STR. In a
lobal approach (G-STR), it is possible to build an image where a
ixel of coordinates (𝑥, 𝑦) has value equal to 𝑌 𝑐

(𝑥,𝑦). The process is more
omplex with a local approach (MS-STR). The region is represented
y a set of 𝑁𝑠𝑒𝑔 STR (𝑃 𝑘, 𝑘 ∈ [1, 𝑁𝑠𝑒𝑔]), all with the same length.

Spatially, each pixel of coordinates (𝑥, 𝑦) ∈  belongs to a set of 𝛤
curves, associated with 𝑃 𝑘, 𝑘 ∈ 𝐾. Each 𝑃 𝑘 corresponds to a STR
image with 𝑐𝑘 as predicted label. From the saliency map, pixel (𝑥, 𝑦)
has an attention value 𝑌 𝑐𝑘

(𝑥,𝑦), associated with 𝑃 𝑘, noted 𝑌 𝑐𝑘 ,𝑃 𝑘

(𝑥,𝑦) . Finally,
the spatial attention of pixel (𝑥, 𝑦) relative to class 𝑐 is defined:

𝑌 𝑐
(𝑥,𝑦) = max

(

𝑌 𝑐𝑘 ,𝑃 𝑘

(𝑥,𝑦) 𝑘 ∈ 𝐾 and 𝑐𝑘 = 𝑐, 0
)

(5)

This is illustrated in Fig. 6(a) with a pixel belonging to 3 curves,
two labeled 𝑐1 and one labeled 𝑐2. The 3 saliency maps are presented
in Fig. 6(b). In each case, the considered pixel is associated with one
column in the saliency map and we consider the spatial attention of the
initial pixel is the highest value in the column (formula (4)), one value
per representation. When considering the class label 𝑐, the highest value
among the STR decisions giving 𝑐 is considered as showed in Fig. 6(c).

To get a semantic map, we propose to build a domain map where
is indicated the pixel label giving the highest attention among possible
classes:

𝑉(𝑥,𝑦) = argmax
𝑐∈𝐶

max
𝑘∈𝐾∕𝑐=𝑐𝑘

𝑌 𝑐𝑘 ,𝑃 𝑘

(𝑥,𝑦) (6)

Such a domain/semantic map is illustrated in Fig. 6(d) with 2 classes.

4. Experimental study in remote sensing

Deep-STaR is experimented on a remote sensing application. Re-
cently, new Earth Observation satellite constellations sense masses
of satellite image time series (SITS). The Sentinel-2 provides image
sequences over a geographical area with high spatial, spectral and tem-
poral resolutions. Such 2𝐷 + 𝑡 imaging data are useful for agricultural
and environmental policy makers, since they enable for example the
control of agricultural crop-fields at large-scale to check the annual
farmers declarations. Our objective is to classify four thematic classes
7

of SITS: (1) meadows, (2) vineyards, (3) traditional orchards and
(4) intensive orchards. The automatic identification of these classes
is complex since these agricultural crop-fields are subject to many
agricultural practices depending on the seasons and the territory man-
agement policies. The thematic study of these classes is motivated by a
multidisciplinary research project (funded by the French National Re-
search Agency), including geomatics and computer scientists.2 Previous
studies also highlighted that orchards are ambiguous classes and tend to
be confused in most classification methods (Stoian et al., 2019). To dif-
ferentiate these classes, spatio-temporal features carry rich information
to discriminate the agricultural practices, tree organizations or mowing,
etc.

4.1. Materials

We studied SITS acquired with the Sentinel-2 satellite, containing
𝑁 = 50 images acquired in 2017 over the same area in East of France,
precisely in 32ULU and 32ULV tiles. Fig. 7 displays samples from four
SITS and the temporal distribution of the 𝑁 images. The images were
pre-processed by the French Theia program to correct and orthorectify
them to be radiometrically comparable. Masks of cloud, shadow and
saturation are given for each image.

In our experiments, we only consider three spectral bands: near-
infrared (Nir), red (R) and green (G), with a 10 m spatial resolution.
The blue band is too much sensitive to atmospheric effects (Pelletier
et al., 2019), and does not allow to discriminate between agricultural
classes. Also, we kept only three bands in order to be similar to other
possible computer vision contexts, involving classical RGB images.

4.2. Reference data

The used reference data are extracted from the French Land Parcel
Identification System records,3 providing polygons with their semantic
labels. We kept only the polygons corresponding to the four studied
classes: meadows, vineyards, traditional orchards and intensive or-
chards. Second column of Table 1 displays the number of polygons.
A photo-interpretation is applied to correct, if needed, the crop-field
delimitations. The satellite images are cropped to build the ITS. Fig. 7
illustrates some examples of agricultural crop-fields.

2 TIMES project – High-performance processing techniques for mapping and
onitoring environmental changes from massive, heterogeneous and high frequency
ata times series see https://anr.fr/Projet-ANR-17-CE23-0015.

3 http://professionnels.ign.fr/rpg.

https://anr.fr/Projet-ANR-17-CE23-0015
http://professionnels.ign.fr/rpg
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Table 1
Data summary: (second col.) Initial number of polygons per class; (third col.) Average number of pixels per polygon; (five last col.) Number of
spatio-temporal segments.
Classes # poly. 𝑎𝑟𝑒𝑎 # MS-STR # G-STR

mean std 𝑅𝑊 10% 𝑅𝑊 20% 𝑅𝑊 50% 𝑅𝑊 70% ℜ∗

Meadows 1 045 250 338 26 110 51 688 128 424 179 914 1 757
Vineyards 562 50 47 3 060 5 821 14 137 19 853 577
Trad. orchards 136 154 305 2 146 4 222 10 474 14 672 189
Int. orchards 191 129 115 2 564 5 027 12 414 17 408 226

Total 1 934 – – 33 880 66 758 165 449 231 847 2 749
Fig. 7. Temporal evolution of four SITS, according (left) to their initial 2𝐷 + 𝑡
epresentation from a SITS and (right) to our 2𝐷 global spatio-temporal representation.
he last line shows the distribution of the images from the SITS (2017).

.3. Data preparation

The aim is to classify agricultural crop-field, modeled as ROIs. The
TR images from these ROIs with different local and global strategies
re constructed (see Fig. 8). They are adapted to fit the input size of
he CNN, both in the temporal and the spatial dimensions, as explained
ereinafter.

emporal dimension (vertical axis). To fill the full size of the CNN input
mage, we apply a linear interpolation on the temporal dimension
o generate 224 dates from the SITS assuming monotonic and linear
volution between two dates. By doing so, we: (1) fill the missing
alues, or masked values by clouds; (2) re-sample the temporal series
o obtain 224 dates.

patial dimension (horizontal axis). According to the considered strate-
ies, the spatial dimension is handled differently and detailed below.
Local strategy (MS-STR): to get a large training dataset, 𝑁𝑠𝑒𝑔

egments are extracted from each ROI, initialized differently in the RW
rocess, leading to MS-STR. 𝑁𝑠𝑒𝑔 is fixed as respectively 10%, 20%,
0% and 70% of the number of pixels in the considered polygon. For
nstance if a ROI is composed of 100 pixels, with parameter 70%, we
uild 70 different planar representations to model the ROI. Table 1
columns 4–7) shows the number of STR built. We also indicate the
ean area of ROIs with their standard deviation, noted 𝑎𝑟𝑒𝑎.

By varying the length 𝐿 of the segments, we study the importance
of the spatial information enriching the pixel time series in the STR.
The studied lengths are 10, 50 and 100. Finally, we center the obtained
planar representations on the horizontal axis of the CNN input image
and we set zero values for the other pixels of the input STR image.
8

Global strategy (G-STR): depending on the number of pixels of the
ROI, two strategies enable to have 224 column images: (1) for the ROIs
less than 224 pixels, we repeat the sequence until the 224 values in 𝑋
axis are filled; (2) for those with more than 224 pixels, we split the
sequence into different images with 224 values. In Table 1 (last column)
the number of G-STR generated is higher than the initial number of
polygons per class.

According to the number 𝑥 of STR associated with a ROI, the same
decision making is employed, see Section 3.5, where 𝑁𝑠𝑒𝑔 is replaced
by 𝑥.

4.4. Data normalization

Data normalization plays a crucial role in pattern recognition task.
This pre-processing re-scales the data in such a way comparisons are
possible between the image samples. The most often used technique is
the 𝑧-normalization. It proceeds by subtracting from each pixel value
the mean of the image pixel values and then by dividing by the standard
deviation of the set of pixel values. In our case, the 𝑧-normalization
is not adapted since, due to the acquisition process, there are some
outliers that would disturb the process.

Another traditional normalization is based on the maximum and
the minimum values in the dataset. Then, from every scalar data is
subtracted the minimum value (𝑚𝑖𝑛) and the result is divided by (𝑚𝑎𝑥−
𝑚𝑖𝑛), where 𝑚𝑎𝑥 is the maximum value of the scalar data. We then
opted for such normalization technique which is more robust with some
further constraint: we limited the values with 2% (or 98%) percentile,
as proposed in (Pelletier et al., 2019).

4.5. Data augmentation for global approaches

From Table 1, it can be noticed that the datasets for the local
approaches are relatively large (due to the multiple 𝑆𝑇𝑅 representa-
tions per ROI built from the RW process) but in case of the global
approach only few samples are available. As we are considering an
end-to-end deep learning procedure to learn spatio-temporal features
and to classify the data, this low number of data can interfere with the
learning of a good model.

In the case of the global approaches, we then investigated data
augmentation (DA) techniques to get more training data to use in the
learning step. In order to get more annotated data, multiple DA tech-
niques can be considered. Traditional DA methods are based on basic
image transformations. The most common are affine transformations
such as flipping, rotation and translation. Also, some are non-affine
ones such as resizing, cropping or adding noise. More recent methods
are based on deep generative-adversarial neural networks to produce
additional synthetic data (Shorten and Khoshgoftaar, 2019). In our
case, such GAN methods cannot be considered to generate more data
since we need a huge annotated database which is not available in
the context of this thematic study. In this study, we only use classical
affine transformations applied on the initial spatial domain  in order
to conserve the initial resolution of the input and the size of polygons.
Then the generated STRs will be different from each others. We apply
some rotations with the specific angles: 45◦, 90◦, 135◦ and 180◦.
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Fig. 8. Four STR built with (MS-STR, G-STR) strategies for a meadow ITS: (a) Local
approach with a Random Walk strategy (𝑅𝑊 (100)). 124 black columns are added to fill
the 224 × 224 image size; (b, c, d) Global approach with three different space-filling
curves.

4.6. Learning and validation protocol

During the experiment, the dataset is split into three data subsets at
parcel (or ROI) level. The subsets represent respectively the training,
validation and test sets. Their sizes are respectively 60%, 20% and 20%
of the total number of labeled data available, respecting the proportions
of the classes. We use a 5-fold cross validation technique to evaluate the
model performance. Then, we report the average overall accuracy (OA)
with the standard-deviation (STD).

Adam optimizer is used with a learning rate of 10−6 and default
values of the other parameters (𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8) with a
batch size of 128. To handle the unbalanced classes, we use a weighted
cross entropy loss function to avoid a potential overfitting towards the
majority classes. We use an early stop with a patience number of 20.
The experiments are done on a server with a Nvidia GPU model Tesla
T4. We used the PyTorch implementation of SqueezeNet.4 The network
is initialized with weights obtained from the ImageNet dataset, then we
fine-tune with our images.

5. Results and discussion

We discuss here the classification results on the remote sensing
application, with the local MS-STR and global G-STR approaches and
present some comparisons with selected competitive methods from the
state-of-the-art. We finally provide visual results obtained with the
attention mechanisms.

5.1. STR visualization

Before presenting quantitative results, we illustrate in Fig. 8 some
STR built with the different strategies of Section 3.2. The G-STR images
differ. With ℜ𝑠𝑛𝑎𝑘𝑒, regular patterns appear horizontally while with
ℜ𝑠𝑝𝑖𝑟𝑎𝑙, the patterns become larger because the curve starts in the center
of the image and goes farther with larger amplitude. As expected,
ℜ𝐻𝑖𝑙𝑏𝑒𝑟𝑡 provides a result smoother than the others because this curve
preserves better the locality of pixels. For the local approach, 𝑅𝑊
provides a smooth result like the ℜ𝐻𝑖𝑙𝑏𝑒𝑟𝑡.

4 https://pytorch.org/hub/pytorch_vision_squeezenet/.
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Table 2
Global classification results (overall accuracy — OA and stand. deviation — STD).

Rep. # Rep. OA STD

De
ep

-S
Ta

R

𝑅𝑎𝑛𝑑

10% 88.87 1.56
20% 89.02 1.38
50% 90.66 0.85
70% 90.00 1.13

Local approaches (MS-STR)

𝑅𝑊 (10)

10% 90.51 0.48
20% 91.48 0.75
50% 92.56 0.95
70% 93.07 1.02

𝑅𝑊 (50)

10% 91.07 2.53
20% 93.80 1.57
50% 94.06 1.44
70% 94.80 1.57

𝑅𝑊 (100)

10% 92.50 1.05
20% 93.20 0.65
50% 94.21 1.19
70% 94.64 0.80

Global approaches (G-STR)

ℜ𝑠𝑛𝑎𝑘𝑒

w
/o

DA 79.94 2.06
ℜ𝑠𝑝𝑖𝑟𝑎𝑙 77.23 1.42
ℜ𝐻𝑖𝑙𝑏𝑒𝑟𝑡 81.69 1.88

ℜ𝑠𝑛𝑎𝑘𝑒

w
ith

DA 91.43 1.58
ℜ𝑠𝑝𝑖𝑟𝑎𝑙 89.43 1.61
ℜ𝐻𝑖𝑙𝑏𝑒𝑟𝑡 91.69 0.91

St
at

e-
of

-th
e-

ar
t

m
et

ho
ds TempCNN (Pelletier et al.,

2019)
– 92.98 0.89

baML (Di Mauro et al., 2017) – 91.25 0.53

LSTM (Ienco et al., 2017) – 83.48 2.29

ConvLSTM (Rußwurm and
Körner, 2018)

– 74.66 1.56

3𝐷-SqueezeNet
(Köpüklü et al., 2019)

– 85.33 1.19

Table 3
Inference time in seconds for our best models vs. state-of-the-art methods (sorted in
the increasing order).

Rep. Average time

G-STR ℜ𝐻𝑖𝑙𝑏𝑒𝑟𝑡 2.72
baML (Di Mauro et al., 2017) 11.91
TempCNN (Pelletier et al., 2019) 13.50
MS-STR 𝑅𝑊 (50) 22.57
ConvLSTM (Rußwurm and Körner, 2018) 23.16
3𝐷-SqueezeNet (Köpüklü et al., 2019) 26.50
LSTM (Ienco et al., 2017) 26.96

5.2. Global classification results

In order to better illustrate the interest of our methodology, we add
a naive baseline involving no spatial information. STR are constructed
as sequence of random pixel time series, noted 𝑅𝑎𝑛𝑑 with 𝐿 = 10. With
such a baseline, the resulting STR can be considered as bag of pixel
time series.

As a preliminary experiment, we conducted an ablation study by
training the model with two strategies. The first one is to train the
model on a restricted temporal range, by keeping one date out of two,
leading to time series with lengths of 112 dates. The second strategy is
to consider all the 224 dates. Here we consider only the MS-STR with
𝑅𝑊 (50)70%. From our observations, the better results are those obtained
with the 224 dates, exceeding with 4% the results with restricted
temporal time-stamps. In the following, we then kept this strategy.

Table 2 reports the obtained global classification scores with our
Deep-STaR models. As expected, within the local strategy, the random
strategy (𝑅𝑎𝑛𝑑) is the weakest. For the 𝑅𝑊 , whatever the length of the
segments is, the scores increase with the segment number. The highest

https://pytorch.org/hub/pytorch_vision_squeezenet/
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Table 4
Obtained per class scores (precision — P, Recall — R and F1-Measure — F1).
Classes Meadows Vineyards Trad.

orchards
Int.
orchards

Average

Deep-STaR

MS-STR - 𝑅𝑊 (50)70%
𝑃 96.08 99.47 78.81 88.02 90.59
𝑅 95.80 98.58 91.42 81.01 91.70
𝐹1 95.94 99.02 84.53 84.16 90.91

G-STR - ℜ𝐻𝑖𝑙𝑏𝑒𝑟𝑡

𝑃 94.56 96.70 71.40 79.71 85.59
𝑅 92.66 96.84 85.18 75.89 87.64
𝐹1 93.59 96.75 77.16 77.72 86.30

State-of-the-art methods

TempCNN (Pelletier et al., 2019)
𝑃 90.98 99.82 89.47 85.42 91.42
𝑅 99.29 99.82 48.57 73.04 80.18
𝐹1 94.94 99.82 61.78 78.68 83.80

baML (Di Mauro et al., 2017)
𝑃 93.51 96.75 67.17 74.12 82.88
𝑅 97.14 99.12 54.07 62.56 78.22
𝐹1 95.28 97.92 58.86 67.72 79.94

LSTM (Ienco et al., 2017)
𝑃 95.58 96.07 34.58 48.80 68.75
𝑅 82.76 98.77 47.40 67.69 74.15
𝐹1 88.70 97.40 39.91 56.55 70.64

ConvLSTM (Rußwurm and Körner, 2018)
𝑃 84.95 84.94 12.07 26.88 52.21
𝑅 80.66 93.33 11.85 31.28 54.28
𝐹1 82.75 88.94 11.96 28.91 53.14

3𝐷-SqueezeNet (Köpüklü et al., 2019)
𝑃 91.41 94.79 39.84 56.21 70.56
𝑅 88.09 98.77 29.63 96.74 78.30
𝐹1 89.58 96.73 33.96 62.36 70.65
r
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result is obtained when 𝐿 = 50, this length appears a good compromise
between short curves giving not enough information on a pixel region,
and long curves that can cover non homogeneous region.

The global G-STR approaches appear to be less efficient than the
local MS-STR approaches. This is partially due to the small size of
the available learning set, emphasized by the improvement thanks to
data augmentation. In addition, the G-STR are all in a 4-connexity
topology. This could explain the lowest results observed. In the MS-STR
approach, the randomness of the orientation of the RW enables to have
an isotropic view of the local region. However, in the best condition of
the global approach, the overall accuracy is greater than with 𝑅𝑎𝑛𝑑.

We also perform the experiments by training the CNN model from
scratch. From our observations, the obtained scores are lower than
when a fine-tuning strategy is considered. The difference is about 4%
for the MS-STR and about 10% for G-STR. Such a difference for the G-
STR may be due to the lower quantity of data when considering global
representations. Also, the training is much quicker when fine-tuning is
considered.

As a comparative study, we compared our scores on the data to five
state-of-the-art methods:

• TempCNN (Pelletier et al., 2019) dedicated to pixel time series
classification, where 1𝐷 convolutions are applied in the temporal
domain;

• baML, a deep convolutional method that works separately on the
spatial and on the temporal domain proposed in Di Mauro et al.
(2017);

• a custom RNN composed of 3 layers of LSTM with 256 hidden
states and a fully connected layer, inspired from Ienco et al.
(2017);

• a convolutional RNN composed of 2 layers of ConvLSTM with
64 hidden states and a convolution layer followed by a relu and
batch normalization, inspired from Rußwurm and Körner (2018).
The classifier is fully convolutional followed by a global average
pooling;

• 3𝐷-SqueezeNet (Köpüklü et al., 2019), is a 3𝐷 extension of
SqueezeNet network, proposed for human action recognition
within video. In its implementation (Köpüklü et al., 2019), the
input is a series of 16 frames. Here, we select 16 frames using a
regular step. The model is pre-trained on the Jester dataset.
10
For comparison purpose, we use the same learning and validation
protocol (Section 4.6). The bottom part of Table 2 reports the obtained
scores. Overall, the Deep-STaR approaches provide the best classifica-
tion scores. 3𝐷-SqueezeNet (Köpüklü et al., 2019) gives disappointing
esults. Such approach suffers from the lack of material in the learning
hase. This highlights, in our context, the benefit of considering a
lassical 2𝐷 CNN model for classifying image sequences combined
ith our spatio-temporal representations. Best score of state-of-the-
rt methods is obtained with TempCNN (Pelletier et al., 2019). The
arameters of the method have been optimized on our data. We used
filter size of 11 related to the series length (Pelletier et al., 2019). In

he original paper, the model is proposed with various depths of the
etwork but it does not affect much the scores and we indicate here
nly the best one.

This highlights the interest of holding as much as possible spatial
elationships between pixel time series. Locally, 𝑅𝑊 preserves partially
eighbors, depending on the curve length 𝐿. Globally, pixels proximity
s involved too.

Table 3 indicates the inference time for state-of-the-art methods as
ell as our two best models. The model based on the G-STR ℜ𝐻𝑖𝑙𝑏𝑒𝑟𝑡

epresentations has the lowest inference time as the number of the
TR is limited (only few per ROI, see Section 4.3 and Table 1). In
he second position, we find the baML method (Di Mauro et al., 2017)
nd TempCNN (Pelletier et al., 2019). baML is faster than TempCNN
ince their model does not have high number of parameters compared
o TempCNN. Our proposal, the local representations with 𝑅𝑊 (50)70%,
omes in the third position as the number of images is higher and
𝐷 images are considered. Finally, ConvLSTM (Rußwurm and Körner,
018), 3𝐷-SqueezeNet (Köpüklü et al., 2019) and LSTM (Ienco et al.,
017) are in the last positions due to the complexity and the memory
anagement of the methods.

.3. Per-class classification results

To go further and since the dataset is not well-balanced, we report in
able 4 the per-class results with our best methods and state-of-the-art
nes.
𝑅𝑊 (50)70% provides the best per-class scores. Deep-STaR is partic-

larly powerful to discriminate categories of orchards (not the most
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Fig. 9. Illustration of the temporal attention computed with Deep-STaR on our thematic application. The mean of attention maps of the four classes are provided with their
associated temporal attention profiles and their binarizations (see Section 3.6.1). Yellow rectangles represent temporal ranges of interest considered in a 2-class study (traditional
vs. intensive orchards). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Illustration of the temporal attention for the four classes obtained with Tem-
CNN (Pelletier et al., 2019). Yellow rectangles represent temporal ranges of interest
onsidered in a 2-class study (traditional vs. intensive orchards). (For interpretation of
he references to color in this figure legend, the reader is referred to the web version
f this article.)

epresented classes). Such agricultural crop-fields are characterized
ith spatial arrangements of trees and peculiar (temporal) agricultural
ractices.

Finally the confusion matrices (not provided here) show that too
uch traditional orchards are classified as intensive ones by Deep-

TaR. All approaches tend to confuse meadows and orchards, in par-
icular TempCNN (Pelletier et al., 2019).

To analyze the CNN behavior, we used the attention mechanisms
o figure which parts of the STR are more used and also to understand
ome errors.

.4. Attention maps results

Figs. 9 illustrates the obtained temporal attention maps on the four
gricultural classes with Deep-STaR. The mean of attention maps of
he four classes are provided with their associated temporal attention
rofiles and their binarizations.

To better evaluate the interest of this approach, we focus here on
2-class study, involving traditional and intensive orchards. From the

ssociated temporal attention profiles, we select the most discrimina-
ive period (see Section 3.6.1). Such period corresponds to a temporal
ange between time 1 and 100 (i.e., January to mid-June). Applying the
odel respectively on these new temporal ranges (see yellow rectangles

n Fig. 9), the results have been improved, highlighting the interest of
he study of attention maps in discarding non significant period of the
ear according for the problem. More precisely, the decrease in errors
s about 7%. For comparison purpose, we conducted a comparable
tudy, by generating temporal attention maps on the four agricultural
 s

11
lasses with TempCNN (Pelletier et al., 2019), see Fig. 10. Yellow
ectangles represent again the new temporal range (between 25 and
195 (i.e., February to November)) considered in the 2-class study. By re-
training the model on these restricted intervals, the decrease in errors
is about 5% with TempCNN (Pelletier et al., 2019).

Besides accuracy improvement, a conclusion of this study is that
temporal attention enables to understand, from the SITS, that Spring
season was more significant than the rest of the year to make the
discrimination.

Fig. 11 illustrates our study about spatial semantic maps on some
examples of landscapes involving meadows. Meadows are large areas
where agricultural practices can vary and evolve over time (e.g., re-
orestation, new crops) according to the needs of landowners. They
onstitute very heterogeneous objects of interest where a single class
abel may not be very consistent and this heterogeneity could lead
he classifier to errors. For visualization purpose, the spatial attention
aps are compared with very high spatial resolution images from
oogle Earth (a, b, c). This enables to see what is happening in the

patial neighborhood of the ROIs. The maps (d, e, f) are obtained with
eep-STaR and our best MS-STR model with 𝑅𝑊 (10). Meadows (a,

b) are well classified in the meadow class, whereas meadow (c) is
misclassified as traditional orchard. Moreover, in the spatial semantic
maps, almost all pixels of meadows (a, b) are labeled as meadows
(yellow color) in (d) and (e). First, we can notice on image (c) the
supposed meadow comprises many isolated trees. This explains why,
on the spatial semantic map, a majority of pixels of the ROI are labeled
as traditional orchard (light green color). Also the right part of this ROI
contains vineyard and it is well labeled thanks to the spatial attention
mechanism.

We also compare the obtained semantic maps with those obtained
with TempCNN (Pelletier et al., 2019) (g, h ,i) and 3𝐷-SqueezeNet
(Köpüklü et al., 2019) (j, k, l). TempCNN classifies well all meadows
(a, b, c). The obtained semantic maps with TempCNN are almost
homogeneous with some pixels classified as orchards and vineyards. In
order to get a segmentation with 3𝐷-SqueezeNet, we start by splitting
he spatial domain into small patches. Then, patches are classified
nd we affect a specific color according to the predicted label. 3𝐷-
queezeNet classifies well meadows (a, b) and fails on the meadow
c). In the maps obtained with 3𝐷-SqueezeNet, tree areas are always
abeled as an intensive orchards. We remark that in the meadow (b),
he common point of all segmentation with the different methods is the
ineyards area that is located in the same position. Beyond this detail,
he concordance between the field observations (from the Google Earth
atellite image) and the results obtained with Deep-STaR compared
o the state of the art confirms again the interest of our method.
his experiment highlights how semantic maps can explain the spatial
ontext of the conclusion, enabling for example to set an alert flag on

ome heterogeneous polygons.
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Fig. 11. Illustration of the semantic maps obtained with Deep-STaR and state-of-the-art
methods: (a, b, c) Bounding boxes of three meadows (and their contexts) represented
on a very high spatial resolution image from Google Earth (meadow borders are in
yellow); (d, e, f) Spatial semantic maps based on the spatial attention with our best
MS-STR model obtained with 𝑅𝑊 (10); (g, h, i) Spatial semantic maps obtained with

empCNN (Pelletier et al., 2019); (j, k, l) Spatial semantic maps obtained with 3𝐷-
queezeNet (Köpüklü et al., 2019). Meadow borders are in black. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version
f this article.)

. Conclusion

In this work, we have proposed the Deep-STaR method designed
or image time series classification. Thanks to a remodeling of the
mage time series into a planar spatio-temporal representation, spatial
elationship of pixels is partially preserved, without losing the tempo-
al information and native spatio-temporal features are learned while
raining a classical 2𝐷 CNN. The use of a 2𝐷 CNN allows to benefit
f pre-learned weights, extracted from ImageNet and fine-tuned with
pecific data. Two strategies are proposed to analyze the preserved
12
patial configurations, local and global strategies, MS-STR and G-STR,
epending on the objective.

Deep-STaR, experimented on a remote sensing application ded-
cated to agricultural crop-field classification, showed scores better
han the state-of-the-art method scores, highlighting the interest of the
roposed method. The classification task becomes simpler and also
enefit from models that are trained on larger datasets. By integrating
n original attention mechanism, a more discriminant temporal range
or different thematic classes can be adapted. Also, generating spatial
emantic maps helps to have a fine interpretation of the taken decision.

Our methodology can be applied on other applications, for example
n biomedical image analysis where cell modifications are studied along
ime. Video indexing is another perspective. Besides we think important
o deeper analyze the filters leading to spatio-temporal features. This
ould enable to better understand the properties of the ROI that is
tudied.
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